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Highlights  

- A high ratio of M. aquatica stimulated L. hexapetala’s flowering 

-  The total biomass and branching of L. hexapetala were lowest in the 

monoculture 

- M. aquatica root/above-ground biomass was reduced by a high ratio of L. 

hexapetala 
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Abstract  

The invasion of aquatic ecosystems by non-native species often leads to competitive 

interactions with native species. However, non-native and native species can co-occur. 

This study presents a comparison between two wetlands species differing in origin: the 

invasive plant Ludwigia hexapetala (Lh) and the native plant Mentha aquatica (Ma). Both 

species were grown for three months in monocultures and in mixtures at different planting 

ratios (6Ma/0Lh, 5Ma/1Lh, 3Ma/3Lh, 1Ma/5Lh; 0Ma/6Lh). We assessed species 

performance in an experimental, outdoor garden. The shoot length, and flower production 

were measured weekly. At the end of the experiment, root and shoot biomasses were 

determined, the number of lateral branches was counted, and shoot lengths were 

measured. Based on biomass, two competition indices were calculated: the Relative Yield 

Total (RYTab) index, and the Relative Competition Intensity (RCI) index. The RCI index 

suggested a facilitation effect for Mentha and for Ludwigia at the ratio of 1Ma/5Lh, 

whereas competition was established for both species at the ratio of 3Ma/3Lh. Both the 

total biomass of L. hexapetala and its production of lateral branches were significantly 

reduced when grown as a monoculture, suggesting intra-specific competition within L. 

hexapetala populations. The number of flowers produced by L. hexapetala was highest 

in the presence of a high ratio of M. aquatica individuals. However, when L. hexapetala 

outnumbered M. aquatica, its ratio of below/above-ground biomass decreased, indicating 

an inter-specific competition effect. The intra-specific competition for L. hexapetala was 

much stronger than interspecific competition. 

 

Keywords: plant performance; functional traits; plant ratio; positive interactions; 

competition. 
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1. Introduction 

Non-native species must overcome numerous geographical and biological barriers 

to become invasive in their introduced range (Richardson et al., 2000; Blackburn et al., 

2011). The establishment success of invasive species relies on the assumption of niche 

differences to native species, involving either the exploitation of unused resources (empty 

niche) (Elton, 1958) or competition mechanisms to access a shared resource (niche 

replacement). Species sharing the same resources commonly coexist in nature. However, 

competition can also result in the extinction of native species (competitive exclusion). 

There is a limit to niche overlap or similarity in resource use between native and non-

native species (i.e., the theory of limiting similarity) (MacArthur and Levins, 1967). 

When niches overlap, the species with superior competitive ability prevails (MacDougall 

et al., 2009). Differences among species in how they use resources determine the outcome 

of this interaction.  

Numerous experiments in aquatic ecosystems have repeatedly shown competitive 

advantages of invasive aquatic plants over native ones (Spencer and Rejmanek 2010; 

Martin and Coetzee, 2014), and even over other non-native plants (Barrat-Segretain and 

Elger, 2004; Mony et al., 2007; Gerard et al., 2014). The competitive advantage of 

invading species is often attributed to traits related to physiology and morphology, such 

as leaf-area allocation, shoot allocation, growth rate, size, and fitness (van Kleunen et al., 

2010; Cuda et al., 2015). However, invasive species are not always superior to native 

species (Daehler, 2003). The biotic resistance hypothesis (Elton, 1958) partly explains 

the failures of many invasion attempts. According to this hypothesis, native species can 

repel invasive plants through competitive exclusion (MacDougall et al., 2009). Therefore, 

the outcome of competition among non-native and native species depends both on 

environmental conditions (Daehler, 2003), such as sediment fertility and nutrient 
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availability (Mony et al., 2007; Stiers et al., 2011; Gérard et al., 2014; Martin and Coetzee, 

2014) and on the functional group identity of the native species (Petruzzella et al., 2018). 

These complex interactions may support native species’ persistence and coexistence with 

invaders (Gurevitch and Padilla, 2004; Sax and Gaines, 2008), yet studies focusing on the 

reciprocal impact of native species on invasive species are rare (Leger and Espeland, 

2010).  

This study examined a non-native versus a native species, Ludwigia hexapetala 

(Hook. and Arn.) Zardini, H. Y. Gu and P. H. Raven (syn. L. grandiflora subsp. 

hexapetala), and Mentha aquatica L. respectively, as biological models. Water primrose 

L. hexapetala is an invasive species in Europe, native to South America (Thouvenot et 

al., 2013a). Water primrose was introduced voluntarily into south-eastern France in 

approximately 1820 (Thouvenot et al., 2013a). It is a perennial aquatic plant forming 

dense mats. It grows horizontally on water (or mud) and can emerge above the water 

surface. Early growth consists of rosette-like clusters of rounded leaves on the water’s 

surface. It is mainly aquatic but is also able to colonise terrestrial habitats, such as 

riverbanks or wet meadows (Thouvenot et al., 2013a). This plant is able to outcompete 

both submerged and emergent native species (Dandelot et al., 2005; Stiers et al., 2011). 

Ludwigia hexapetala produces allelochemicals (Dandelot et al., 2008; Santonja et al., 

2018), which could be implicated in the outcome of the interactions between water 

primrose and native species. In France, L. hexapetala has not been imported since 2007 

because its sale and introduction in natural areas has been forbidden by law. It was 

included in the first European Union list of 37 invasive species, adopted by the European 

Commission in July 2016. According to EU criteria, species included in the list can cause 

damage on a scale that justifies dedicated measures applicable across the European Union. 
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These measures effectively prevent, minimise, or mitigate the adverse impact of these 

species in a cost-effective manner.  

Mentha aquatica (Lamiaceae) is a native macrophyte from the northern temperate 

regions of Europe. It has a creeping rhizome with submerged leaves, and the erect stems 

possess aerial leaves. Mentha aquatica is most common along wet or waterlogged 

riverbanks with the shoots exposed to the air, but it can also grow fully submerged during 

wet seasons. According to the biotic resistance hypothesis, M. aquatica could repel L. 

hexapetala through competitive exclusion (MacDougall et al., 2009). The invasive L. 

hexapetala and the native M. aquatica may co-occur in the wild in European aquatic 

ecosystems.  

The aim of this study was to investigate, experimentally, in a common garden, the 

effect of neighbour (M. aquatica versus L. hexapetala) on the performance (biomass, 

production of flowers and life-cycle completion) of two species at a constant density. It 

was hypothesised that the performance of L. hexapetala and of M. aquatica would depend 

on the ratio and/or on the identity of the neighbouring species. 

2. Materials and methods 

Two macrophyte species were selected for the study: the non-native Ludwigia 

hexapetala and the native Mentha aquatica. 

2.1. Experimental design 

In mid-March 2017, 150 shoots each of L. hexapetala (Lh) and M. aquatica (Ma) 

were collected from a channelized stream (Marais de Mainguy, 47°07'21.7"N 

2°00'14.9"W) and from a pond (Pornic, 47°07'22.5"N 2°05'22.0"W), respectively, in 

western France. At these two sampling sites, the two species did not co-occur. Shoots 

(hereafter called individuals) derived from a single stand either of L. hexapetala (Lh) or 
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M. aquatica (Ma) were acclimatised for two weeks in dechlorinated tap water at room 

temperature.  

For each individual, an apical shoot, without buds or lateral stems, was cut to 7 

cm in length. The mean initial fresh weights of L. hexapetala and of M. aquatica were, 

respectively, 0.6 ± 0.24 g FW and 1.59 ± 0.74 g FW. In the laboratory, the apical shoots 

(150 per species) were gently rinsed with tap water to remove invertebrates, algae, and 

debris in preparation for planting. Each shoot was planted in a pot (22 cm in diameter and 

30 cm in height), containing a fertile agricultural soil (NPK= 14:10:18 kg/m3, pH=6). The 

effects of the experimental conditions were tested by combining different ratios of M. 

aquatica and L. hexapetala individuals for a total density of six individuals per pot, 

following a replacement series design (Cousens, 1991). In the standard replacement 

design, the same density is used for both species in their respective monocultures; 

mixtures are formed by substituting an equal number of plants of one species for that of 

the other, so that the total number of plants per unit area is constant. The overall density 

per pot (six individuals per pot, i.e. six individuals/0.038m²) corresponds to the density 

typically observed in the field (from 100 to 200 individuals/m²) (G. Thiebaut, unpubl. 

data). Experimental conditions consisted of monospecific pots (6Ma/0Lh or 0Ma/6Lh; 

containing six individuals of one plant species, Ma or Lh, respectively), mid-ratio pots 

(3Ma/3Lh; including three individuals of each species), high ratio (5Ma/1Lh; including 

five individuals of the focal species Ma, and one single individual of the alternative 

species Lh), and a low ratio treatment (1Ma/5Lh; including one single individual of the 

focal species Ma, and five individuals of the alternative species Lh). Each treatment had 

ten replicates. The experiment was conducted outdoors in the experimental garden 

ECOBIO Research Facility at the University of Rennes 1 (48° 7'4.50"N; 1°38'22.96"W) 

from April (14th week of the year) to July (26th week of the year). According to the 
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Köppen climate classification, the climate type is categorised as a Cfb temperate oceanic 

climate zone, in which the mean annual temperature is 13°C and the mean annual 

precipitation is 694 mm. 

The bottom of the pots were kept in tap water (ca. 10 cm depth). The water 

chemistry was basic with moderate nutrient concentrations (mean annual value according 

to French Water Agency data: conductivity = 400 µS cm-1; pH= 8.10; [NO3
- N] = 1.44 

mg L-1; [NH4
+ N] = 0.03 mg L-1; [PO4

3-P] = 0.05 mg L-1).  

2.2. Measurement of morphological traits 

The number of flowers and the length of the main shoot (of all individuals) were 

measured in all of the pots each week for 11 weeks. The Relative Growth Rate (RGR; 

d−1) was also calculated on a weekly basis, as suggested by Hunt (1990): 

RGR stem = (ln L2 - ln L1)/(T2 - T1) 

where L1 and L2 represent total length at time T1 (beginning of the experiment) 

and T2 (end of the experiment). 

At the end of the experiment, the main shoot length was measured, the number of 

lateral branches was counted, and the roots and shoots were harvested. The above-ground 

and below-ground parts of the plants were dried separately at 65°C for 72 hours and 

weighed. The below-ground/above-ground ratio was calculated. RGR and stem length are 

indicators of apical growth, whereas the number of lateral branches is an indicator of 

lateral growth and the plant’s ability to regenerate (Barrat-Segretain et al., 1998). The 

number of roots is an indicator of the plant’s ability to colonise (Barrat-Segretain et al., 

1998). 

2.3. Indices of plant competition 

Indices were used to quantify and express several attributes of plant competition, 

including competition intensity and importance, competitive effects and responses, and 
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the outcome of competition (Weigelt and Joliffe, 2003). Two indices were selected: the 

Relative Yield Total index (RYTab) (de Witt and Van den Bergh, 1965) reflects how plant 

performance is influenced by population density or neighbour size; the Relative 

Competition Intensity (RCI) index (Grace, 1995) quantifies the intensity of the 

competition. The RYTab (de Witt and Van den Bergh, 1965) was calculated for each ratio 

treatment, using the following equation: 

RYTab = RYa + RYb 

Where RYa and RYb corresponded to the individual relative yields of each species 

for the given magnitude.  

The relative yield of a species is: 

RY = Ymix/Ycontr 

in which Ymix and Ycontr are the biomasses in mixture and in monoculture. 

Individual relative yield divides the individual biomass for each plant of the given 

species in the given treatment by the average yield of the biomass of the same species 

cultivated in monoculture conditions. According to Snaydon (1991), an RYTab value of 2 

would indicate that the species did not share any common limiting resource, i.e. it did not 

compete and showed full resource complementarity, while RYTab values greater than 1 

indicate that the species did not fully share common limiting resources, i.e. it competed 

partially and showed partial resource complementarity, and RYTab values of 1 indicate 

that the species fully shared the same limiting resources, i.e. competed fully and showed 

no resource complementarity.  

 the RCI (Grace 1995), with the following formulation: 

RCI = (Pmono - Pmix)/Pmono 

Where Pmono represents the performance of a plant (hereafter total biomass) in a 

monoculture and Pmix represents the performance (i.e. total biomass) of a plant in a 
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mixture. RCI compares the performance of plants growing in a mixture with control 

plants growing alone. 

The RCI score was calculated for each species at each planting ratio in mixtures 

(i.e. 1Ma/5Lh, 3Ma/3Lh, 5 Ma/1Lh). According to Goldberg et al. (1999), a negative 

score indicates a better performance of the plants growing in mixture than individuals 

growing in monoculture, suggesting facilitation interactions between the two species. A 

positive value indicates a weaker performance of the plants in mixture in comparison with 

plants coming from a monoculture, suggesting competitive interactions between the two 

species. There is no minimum RCI value for facilitation, but there is a maximum value of 

1 indicating maximal competition. An RCI of 0 indicates null interaction effects. 

2.4. Data analyses 

RGRs were analysed on a repeated-measures basis by means of non-parametric 

testing (Naguchi et al., 2012), since data did not meet criteria for parametric analyses (i.e., 

homoscedasticity and normality of residuals). Whenever the interaction between 

treatment (planting ratio) and time was significant, pairwise comparison among 

treatments was performed within a given sampling time using the Mann–Whitney–

Wilcox test. Data pairwise comparisons were only run for the periods when growth rates 

peaked and a subsequent Benjamini–Yekutieli correction for dependent multiple tests was 

applied to the multiple test series (Benjamini and Yekutieli, 2001). 

Morphological traits matrices were analysed independently for each species by 

means of Metric Multidimensional Scaling (MDS) based on Euclidean distance with 

standardised values. Since the graphical results suggested treatment effects on plant 

morphology, univariate analyses were used to explore treatment effects on the 

below/above-ground biomass ratio, total biomass, main stem length, number of flowers 

(total number of flowers produced throughout the whole experiment), and the number of 
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branches. Whenever possible, a linear model approach was used for univariate analysis. 

A type II sum of squares was used in each case for testing the significance of the planting 

ratio treatment effect, owing to the unbalanced design (Langsrud, 2003). A linear model 

approach was used to analyse treatment effect on the harvested biomass. In the case of 

the M. aquatica data set, biomass was log-transformed prior to the analysis in order to 

meet normality and homoscedasticity requirements. Residuals were explored graphically 

to assess departure from the assumptions of the analysis (Bolker et al., 2009). Number of 

branches and number of flowers were analysed with a general linear model (GLM) using 

a Poisson distribution. Patterns in residuals were explored graphically to assess departure 

from the assumptions of the analysis (Bolker et al., 2009). As the number of flowers for 

M. aquatica did not meet normality and homoscedasticity requirements, a Kruskal–Wallis 

test was run. Whenever the treatment effect of the planting ratio was significant, HSD 

Tukey pairwise comparisons were run to determine significant differences among the 

levels of the experimental factor. Pairwise comparisons based on a non-parametric 

Wilcox test and subsequent Bonferroni corrections were used for the different ratios when 

a significant p-value was obtained with the Kruskal–Wallis univariate test. All analyses 

were performed with R software (R Core Team, 2016). The nparLD package (Naguchi et 

al., 2012) was used for nonparametric analysis of longitudinal data; the multcomp 

package for HSD Tukey pairwise comparisons (Hothorn and Bretz, 2008); and the vegan 

package (Oksanen et al., 2017) for MDS analysis. 

3. Results 

The calculation of the RYTab index indicated that the two species did not share 

any common limiting resources, suggesting there was no competition between M. 

aquatica and L. hexapetala (Fig 1A). The highest biomass total yield (RYT) was observed 

in pots at the planting ratio 1Ma/5Lh and, to a lesser extent, in pots at the planting ratio 
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5Ma/1Lh (Fig 1A). We observed an increase in biomass production RY of L. hexapetala  

RY of M. aquatica (over-yielding) for both species in mixtures at the planting ratio 

1Ma/5Lh, and an increase in biomass production (RY) of L. hexapetala only at the 

planting ratio 5Ma/1Lh (Fig. 1A).  

The RCI standardises competition intensity, allowing the comparison of species 

with different RGR in the absence of interaction. Negative RCI values were found for 

both species at the ratio of 1Ma/5Lh, whereas positive values were calculated at the ratio 

3Ma/3Lh (Fig. 1B). The RCI was close to 0 for M. aquatica and negative for L. 

hexapetala at the ratio of 5Ma/1Lh. 

The highest RGRs for both L. hexapetala and M. aquatica were documented 

during the third growth period (week 3). For L. hexapetala, it was significantly lower at 

the ratio of 5Ma/1Lh than when the individual grew in a monoculture or at the 1Ma/5Lh 

ratio (Table 1; Fig. 2A). On the other hand, M. aquatica exhibited highest growth rates in 

the 1Ma/5Lh and 3Ma/3Lh ratio treatments for the same periods (Fig. 2B).  

The overlap of the treatments was greater for M. aquatica than for L. hexapetala 

(Fig. 3). Taking into account centroids in MDS analysis (Fig. 3A), the traits of L. 

hexapetala shoots issued from 5Ma/1Lh and 1Ma/5Lh treatments differed from those 

coming from the monoculture treatment (0Ma/6Lh). The shoots of M. aquatica coming 

from the 1Ma/5Lh treatment were visually distinct from those coming from other 

treatments (Fig. 3B). It is worth noting that the greatest variability was consistently 

observed in the 5Ma/1Lh treatment for L. hexapetala and the 1Ma/5Lh treatment for M. 

aquatica.  

The total biomass of Ludwigia hexapetala individuals was significantly smaller in 

monoculture than in mixture (1Ma/5Lh and 5Ma/1Lh treatments). The individuals of L. 

hexapetala had significantly fewer branches in monoculture than in the 1Ma/5Lh 
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treatment (Table 2; Fig. 4). On the other hand, L. hexapetala individuals produced 

significantly more flowers in 5Ma/1Lh than in 1Ma/5Lh and in monoculture (Table 2; 

Fig. 4). At the ratio of 1Ma/5Lh, M. aquatica individuals had the lowest below/above-

ground biomass ratio, by a significant margin (Table 2; Fig. 4). 

4. Discussion  

4.1 Impacts of Mentha aquatica on the performance of Ludwigia hexapetala 

Although most studies on the interactions among invasive and native aquatic 

plants have focused on competition (Spencer and Rejmanek, 2010; Martin and Coetzee, 

2014; Gérard et al., 2014), there is increasing recognition that facilitation can be important 

in such interactions (Rodriguez, 2006). ‘Facilitation’ is defined as an interaction by which 

one species positively impacts the performance of another. The RCI indices suggested a 

facilitation effect for L. hexapetala in the presence of a low or high ratio of M. aquatica. 

The number of lateral branches and the total biomass of L. hexapetala were stimulated by 

the presence of one individual of M. aquatica. Moreover, the study findings also showed 

a positive effect of the presence of M. aquatica on the total biomass and on the production 

of flowers by L. hexapetala when water primrose was out numbered by M. aquatica. It is 

plausible that these positive effects were mediated by some change in the soil 

environment such as inhibition of denitrification to enhance release of nutrients that also 

benefit the water primrose (indirect facilitation). The allocation of energy to lateral 

growth, biomass, and flowering suggests an efficient strategy for avoiding competition 

with M. aquatica.  

Surprisingly, no negative impact of M. aquatica on the invasive L. hexapetala was found. 

A possible explanation is the low level of competition for resources in the mesocosms, as 

indicated by the value of the RYTab. During the experiment, L. hexapetala adopted a 

creeping mode of growth, whereas M. aquatica produced erect stems. These two types of 
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architecture, creeping versus erect, meant competition for space and light was avoided, 

and suggests niche partitioning. Competition is expected to occur mostly between species 

of similar growth form and occupying similar niches. The individuals of L. hexapetala 

had less biomass in monoculture than at 1Ma/5Lh and 5Ma/1Lh treatments, and produced 

fewer lateral branches in monoculture than at 1Ma/5Lh treatment and less flowers in 

monoculture than at 5Ma/1Lh treatment, suggesting strong intraspecific competition for 

resources between the individuals of L. hexapetala. Competition for light is likely to have 

led the plants in monoculture to reduce their investment in branching (lateral growth). 

The number of meristems that can potentially produce reproductive organs can be 

inhibited by competition for light (Bonser and Aarssen, 2003), negatively influencing the 

number of flowers. The stem lengths of L. hexapetala individuals in monocultures were 

generally small. Smaller individuals with low reproductive allocation may simply have 

been growing and developing more slowly, and might have reached the same biomass if 

they had had more time to develop. Plants were also measured after three weeks, when a 

lower relative growth rate of M. aquatica in monoculture and at the high planting ratio 

(5Ma/1Lh) suggested a competition for resources within the species. This hypothesis is 

also supported by competition indices (RCI) results. 

4.2. Impacts of Ludwigia hexapetala on the performance of Mentha aquatica  

The results did not show a negative impact of L.hexapetala on the growth of M. 

aquatica, whereas in the field the presence of L. hexapetala affects the abundance of 

native species such as Alisma plantago-aquatica, Ceratophyllum demersum, and Lycopus 

europaeus (Stiers et al., 2011). However, this study established that the below/above-

ground biomass ratio of M. aquatica was reduced in the presence of a high planting ratio 

of L. hexapetala (1Ma/5Lh). In a previous study, the authors showed that M. aquatica 

root length decreased at a higher L. hexapetala ratio, and no effect was found of the 

ACCEPTED M
ANUSCRIP

T

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12313#jec12313-bib-0003


14 

 

presence of L. hexapetala on the relative growth rate of M. aquatica (Thouvenot et al., 

2013b). These results are congruent with Vila and Weiner’s (2004) review of pairwise 

experiments on non-native and native plant species, which supports the general 

perception that the effect of invasive species on native species is usually stronger, and not 

vice versa. The lower root biomass of M. aquatica observed in the presence of five 

individuals of L. hexapetala could be due to the synthesis of allelochemicals by the water 

primrose roots (pedunculagin and an ellagic acid) (Marcellin-Gros, 2015) and a 

subsequent inhibition of M. aquatica’s root growth. Indeed, ellagic acid is a rooting 

inhibitor (Qin et al., 2006). However, in our study, we did not specifically test this 

hypothesis. Surprisingly, the presence of five individuals of L. hexapetala could benefit 

the growth rate of M. aquatica. However, this result was only measured once, during the 

most active growing period (after three weeks). At this phenological stage, there was no 

competition for light between water primrose and M. aquatica. 

The absence of a significant effect of different ratios on the traits of the native 

species related to growth (stem length, number of lateral branches, total biomass) could 

be explained by (a) similar competitive abilities of the two species; (b) high variability of 

competitive abilities within species; or (c) because the intensity of competition was not 

sufficiently high to cause significant differences in species performance within the time 

scale of the study. This study has shown that a native plant species can coexist with an 

invasive plant species at a certain ratio, suggesting the possibility of adaptive evolutionary 

responses in this plant to the invasive plant. Indeed, it has been hypothesised that strong 

competition from invasive plants eliminates native plant genotypes that cannot resist or 

tolerate strong competition, resulting in an accumulation of native plant genotypes that 

can resist or tolerate such competition within the native populations (Leger and Espeland, 

2010). The greater fitness of these native populations could be a result of their evolved 
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tolerance or competitive ability against non-native species (Leger and Espeland, 2010; 

Oduor, 2013). In the field, the two species can co-exist, they can develop a common 

interaction history, allowing the native species to partially resist the invasive L. 

hexapetala. 

The results of this study suggest that the outcome of the interactions (Competition, 

Facilitation) between L. hexapetala and M. aquatica was partially determined by the 

planting ratio of the species. The study has shown strong intraspecific competition within 

L. hexapetala individuals and facilitation interactions between L. hexapetala and M. 

aquatica, indicating that species coexistence is favoured over competitive exclusion. The 

findings can be extrapolated to the broader context of how native and non-native species 

can exist together (or not), although this study investigated only two species, one example 

of a native and non-native species interacting.  

Thus, the strength of competitive interactions between invasive and native plants 

that might result in evolutionary responses from the native species may be context-

dependent, varying with both habitat productivity and the inherent traits of the invasive 

and native plants under consideration (Funk and Vitousek, 2007; Leger and Espeland, 

2010).  
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Figure caption 

 

Figure 1. Competition indices based on the total biomass and calculated according to the 

treatment ratio. Fig.1A: The score of Relative Yield Total index (RYTab) was 

calculated for each mixture treatments. It shows the individual Relative Yield of each 

species contributing to the RYT. Relative Yield scores of L. hexapetala : black circles.  

Relative Yield scores of M. aquatica : black triangles. Relative Yield Total index 

(RYTab): black squares. Fig. B: Relative Competition Intensity (RCI). L. hexapetala: 

black circles, and M. aquatica: black triangles 

Figure 2. Mean Relative Growth Rate (RGR) plus standard error by period (two weeks 

measurement) for the two species: Ludwigia hexapetala (A) and Mentha aquatica (B). 

Symbols marked with the same letter were not significantly different for treatment 

factor within the same period (p>0.05) according Mann-Whitney-Wilcox pairwise 

comparisons corrected by Benjamini-Yekutieli correction. 

Figure 3. MDS plot based on Euclidean distance and morphological traits after 

standardisation. Fig 2A showed ellipsoids at 95% SE around the centroid for each 

treatment for L. hexapetala. Fig 2B showed ellipsoids at 95% SE around the centroid 

for each treatment for M. aquatica.  

Figure 4. Mean values + standard errors of morphological traits (Total biomass, 

root/above-ground biomass, total main stem length, number of branches and total 

number of counted flowers) for L. hexapetala (A, B, C, D, E) or M. aquatica (F,G, 

H, I, J). Bars marked with the same letter were not significantly different for 

treatment factor within the same period (p>0.05) according to HSD Tukey 

pairwise comparisons. 
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Fig 2 
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Fig 3 
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Fig 4 
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Table 1. Longitudinal data analysis results based on non-parametric repeated measures. RGR is Relative 

Growth Rate. ATS denotes Anova-type Statistic. Significant p-values at 5% significance level 

are in bold. 

  L. hexapetala M. aquatica 

  ATS df p ATS df p 

RGR Density 2.51 2.54 0.07 1.62 1.64 0.09 

 Time 31.28 4.80 <0.001 68.31 6.33 <0.001 

 Density 

x Time 
2.49 8.41 0.01 3.05 10.93 <0.001 
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Table 2. Univariate analyses of morphological traits results. The first three variables were 

analyzed with a linear model and type II sum of squares. Lateral Branches and Flowers were 

analyzed by means of glm following a Poisson error distribution, except for Number of flowers 

variable in the case of M. aquatica analyzed with a Kruskal-Wallis test. Significant p-values at 

5% significance level are in bold. 

 L. hexapetala M. aquatica 

 SS df F p SS df F p 

Total Biomass 28.88 3 4.55 0.004 6.92 3 0.56 0.6 

Stem Length 4.98 3 2.18 0.09 271.4 3 2.27 0.08 

Below/ above ground biomass 0.27 3 2.10 0.1 4.71 3 5.27 0.002 

 𝜘2 df p 𝜘2 df p 

Lateral Branches 13.45 3 0.004 2.77 3 0.4 

Number Flowers 13.06 3 0.005 1.96 3 0.6 
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