M. Carlier, Guanosine-5'-triphosphate hydrolysis and tubulin polymerization, Mol Cell Biochem, vol.47, pp.97-113, 1982.

T. Mitchison and M. W. Kirschner, Dynamic instability of microtubule growth, Nature, vol.312, pp.237-279, 1984.

R. A. Walker, E. T. O'brien, N. K. Pryer, M. F. Soboeiro, W. A. Voter et al., Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, J Cell Biol, vol.107, pp.1437-1448, 1988.

J. Howard and A. A. Hyman, Dynamics and mechanics of microtubule plus end, Nature, vol.422, pp.753-758, 2003.

C. Duellberg, N. I. Cade, D. Holmes, and T. Surrey, The size of the EB cap determines instantaneous microtubule stability, Elife, vol.5, pp.1-23, 2016.

A. Aher and A. Akhmanova, Tipping microtubule dynamics, one protofilament at a time, Curr Opin Cell Biol, vol.50, pp.86-92, 2018.

A. Akhmanova and M. O. Steinmetz, Control of microtubule organization and dynamics: two ends in the limelight, Nat Rev Mol Cell Biol, vol.16, pp.711-726, 2015.

I. Gasic and T. J. Mitchison, Autoregulation and repair in microtubule homeostatis, Curr Opin Cell Biol, vol.56, pp.80-87, 2019.

R. B. Dye, P. F. Flicker, D. Y. Lien, and R. C. Williams, End-stabilized microtubules observed in vitro: stability, subunit, interchange, and breakage, Cell Motil Cytoskel, vol.21, pp.171-86, 1992.

L. Schaedel, K. John, J. Gaillard, M. V. Nachury, L. Blanchoin et al., Microtubules self-repair in response to mechanical stress, Nat Mater, vol.14, pp.1156-1163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218413

T. A. Reid, C. Coombes, and M. K. Gardner, Manipulation and Quantification of Microtubule Lattice Integrity, Biology Open, vol.6, pp.1245-1256, 2017.

A. Dimitrov, M. Quesnoit, S. Moutel, I. Cantaloube, C. Poüs et al., Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescue, Science, vol.322, pp.1353-1356, 2008.

H. De-forges, A. Pilon, I. Cantaloube, A. Pallandre, A. Haghiri-gosnet et al., Localized Mechanical Stress Promotes Microtubule Rescue, Curr Biol, vol.26, pp.3399-3406, 2016.

C. Aumeier, L. Schaedel, J. Gaillard, K. John, L. Blanchoin et al., Self-repair promotes microtubule rescue, Nat Cell Biol, vol.18, pp.1054-1064, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416168

A. Vemu, E. Szczesna, E. A. Zehr, J. O. Spector, N. Grigorieff et al., Roll-Mecak A. Severing enzymes amplify mirotubule arrays through lattice GTP-tubulin incorporation, Science, vol.361, p.1504, 2018.

V. Vanburen, D. J. Odde, and L. Cassimeris, Estimations of lateral and longitudindal bond energies within the microtubule lattice, Proc Natl Acad Sci USA, vol.99, pp.6035-6040, 2002.

V. Vanburen, L. Cassimeris, and D. J. Odde, Mechanochemical model of microtubule structure and selfassembly kinetics, Biophys J, vol.89, pp.2911-2926, 2005.

D. Sept, N. A. Baker, and J. A. Mccammon, The physical basis of microtubule structure and stability, Prot Sci, vol.12, pp.2257-2261, 2003.

D. Chrétien and S. D. Fuller, Microtubules switch occasionally into unfavorable configurations during elongation, J Mol Biol, vol.298, pp.663-76, 2000.

D. Chrétien, F. Metoz, F. Verde, E. Karsenti, and R. H. Wade, Lattice defects in microtubules: protofilament numbers vary within individual microtubules, J Cell Biol, vol.117, 1992.

J. Atherton, M. Stouffer, F. Francis, and C. A. Moores, Microtubule architecture in vitro and in cells revealed by cryo-electron tomography, Acta Cryst D, vol.74, pp.1-13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01822830

B. Vitre, F. M. Coquelle, C. Heichette, C. Garnier, D. Chrétien et al., EB1 regulates microtubule dynamics and tubulin sheet closure in vitro, Nat Cell Biol, vol.10, pp.415-436, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274450

H. Doodhi, A. E. Prota, R. Rodríguez-garcía, H. Xiao, D. W. Custar et al., Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes, Curr Biol, vol.26, pp.1713-1721, 2016.

I. T. Schaap, P. J. De-pablo, and C. F. Schmidt, Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy, Eur Biophys J, vol.33, pp.462-469, 2004.

R. C. Weisenberg, Microtubule Formation in vitro in Solutions Containing Low Calcium Concentrations, Source Sci New Ser, pp.1104-1105, 1972.

E. H. Kellogg, N. Hejab, S. Howes, P. Northcote, J. H. Miller et al., Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures, J Mol Biol, vol.429, pp.633-646, 2017.

H. Yajima, T. Ogura, R. Nitta, Y. Okada, C. Sato et al., Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy, J Cell Biol, vol.198, pp.315-322, 2012.

T. Kirkwood, Geometric means and measures of dispersion, Biometrics, vol.35, pp.908-909, 1979.

E. Mandelkow, R. Schultheiss, R. Rapp, M. Müller, and E. Mandelkow, On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness, J Cell Biol, vol.102, pp.1067-1073, 1986.

D. Chrétien and R. H. Wade, New data on the microtubule surface lattice, Biol Cell, vol.71, pp.161-174, 1991.

M. K. Gardner, B. D. Charlebois, I. M. Jánosi, J. Howard, A. J. Hunt et al., Rapid microtubule selfassembly kinetics, Cell, vol.146, pp.582-592, 2011.

Z. Wu, H. Wang, W. Mu, Z. Ouyang, E. Nogales et al., Simulations of tubulin sheet polymers as possible structural intermediates in microtubule assembly, PLoS ONE, vol.4, issue.10, p.7291, 2009.

V. Hunyadi, D. Chrétien, and I. M. Jánosi, Mechanical stress induced mechanism of microtubule catastrophes, J Mol Biol, vol.348, pp.927-938, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00108007

M. E. Janson and M. Dogterom, A bending mode analysis for growing microtubules: evidence for a velocity-dependend rigidity, Biophys J, vol.87, pp.2723-2736, 2004.

D. Chrétien, S. D. Fuller, and E. Karsenti, Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates, J Cell Biol, vol.129, pp.1311-1328, 1995.

F. Coquelle, S. Blestel, C. Heichette, I. Arnal, C. Kervrann et al., Cryo-electron tomography of microtubules assembled in vitro from purified components, Methods in Molecular Biology, vol.777, pp.193-208, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00651384

A. A. Hyman, D. Chrétien, I. Arnal, and R. Wade, Structural Changes Accompanying GTP Hydrolysis in Microtubules: Information from a Slowly Hydrolyzable Anlalogue Guanylyl-(?,?)-Methylene-Diphosphonate, J Cell Biol, vol.128, pp.117-125, 1995.

M. L. Shelanski, Chemistry of the filaments and tubules of brain, J Histochem Cytochem, vol.21, pp.529-539, 1973.

K. Malekzadeh-hemmat, P. Gendry, and J. F. Launey, Rat pankreas kinesin: Identification and potential binding to microtubules, Cell Mol Biol, vol.39, pp.279-285, 1993.

A. Hyman, D. Drechsel, D. Kellogg, S. Salser, K. Sawin et al., Preparation of modified tubulins, Methods Enzymol, vol.196, pp.478-485, 1991.

D. Portran, J. Gaillard, M. Vantard, and M. Théry, Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks, Cytoskeleton (Hoboken), vol.70, pp.12-23, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00750812

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal Chem, vol.70, pp.4974-4984, 1998.

D. Chrétien, B. Buendia, S. D. Fuller, and E. Karsenti, Reconstruction of the centrosome cycle from cryoelectron micrographs, J Struct Biol, vol.120, pp.117-133, 1997.

F. Weis, L. Moullintraffort, C. Heichette, D. Chrétien, and C. Garnier, The 90-kDa heat shock protein HSP90 protects tubulin against thermal denaturation, J Biol Chem, vol.285, pp.952-534, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00467041

D. N. Mastronarde, Dual-axis tomography: an approach with alignment methods that preserve resolution, J Struct Biol, vol.120, pp.343-352, 1997.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., CSF Chimera--a visualization system for exploratory research and analysis, J Comput Chem, vol.25, pp.1605-1617, 2004.

J. J. Lukkien, J. Segers, P. Hilbers, R. J. Gelten, and A. Jansen, Efficient Monte Carlo methods for the simulation of catalytic surface reactions, Phys Rev E, vol.58, pp.2598-2610, 1998.

H. Sui and K. H. Downing, Structural basis of interprotofilament interaction and lateral deformation of microtubules, Structure, vol.18, pp.1022-1031, 2010.

G. M. Alushin, G. C. Lander, E. H. Kellogg, R. Zhang, D. Baker et al., High-resolution microtubule structures reveal the structural transitions in ??-tubulin upon GTP hydrolysis, Cell, vol.157, pp.1117-129, 2014.

D. Groot, . Sr, and P. Mazur, Non-equilibrium thermodynamics, 1984.

, Schematic representation of the experimental setup to test the role of the microtubule growth rate (i.e. lattice-defect frequency) on tubulin turnover in the microtubule lattice. Microtubules were grown in 14 ?M, 20 ?M or 26 ?M red-fluorescent free tubulin (step I) before capping with GMPCPP (step II). Microtubules were then exposed to 20 ?M green-fluorescent free tubulin for 15 min (step III) before washout and imaging (step IV). (b) The images and line scans

, Author manuscript; available in PMC, Nat Phys, 2019.

. Schaedel, , p.27