, Electrical effects accompanying the decomposition of organic compounds, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol.84, pp.260-276, 1911.

B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller et al., Microbial Fuel Cells: Methodology and Technology, vol.40, pp.5181-5192, 2006.

J. T. Babauta, H. D. Nguyen, T. D. Harrington, R. Renslow, and H. , Beyenal, pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer, Biotechnology and Bioengineering, vol.109, issue.10, pp.2651-2662, 2012.

B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nature Reviews Microbiology, vol.7, p.375, 2009.

D. R. Lovley, Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination, Energy & Environmental Science, vol.4, issue.12, pp.4896-4906, 2011.

K. Rabaey and R. A. , Microbial electrosynthesis -revisiting the electrical route for microbial production, Nature Reviews Microbiology, vol.8, p.706, 2010.

U. Schröder, Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery, Journal of Solid State Electrochemistry, vol.15, issue.7, pp.1481-1486, 2011.

A. Kuzume, U. Zhumaev, J. Li, Y. Fu, M. Füeg et al., An insitu surface electrochemistry approach toward whole-cell studies: Charge transfer between Geobacter sulfurreducens and electrified metal/electrolyte interfaces through linker molecules, Electrochimica Acta, vol.112, pp.933-942, 2013.

A. Kumar, L. H. Hsu, P. Kavanagh, F. Barrière, P. N. Lens et al.,

V. Lienhard, U. Schröder, X. Jiang, and D. Leech, The ins and outs of microorganism-electrode electron transfer reactions, Nature Reviews Chemistry, vol.1, p.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01542755

C. M. Paquete and R. O. Louro, Molecular details of multielectron transfer: the case of multiheme cytochromes from metal respiring organisms, Dalton Transactions, vol.39, issue.18, pp.4259-4266, 2010.

H. Smida, T. Flinois, E. Lebègue, C. Lagrost, and F. Barrière, Microbial Fuel CellsWastewater Utilization, pp.328-336, 2018.

H. Smida, E. Lebègue, J. Bergamini, F. Barrière, and C. Lagrost, Reductive electrografting of in situ produced diazopyridinium cations: Tailoring the interface between carbon electrodes and electroactive bacterial films, Bioelectrochemistry, vol.120, pp.157-165, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695553

H. Smida, E. Lebègue, M. Cortes, J. Bergamini, F. Barrière et al., Reductive electrografting of in situ produced diazopyridinium cations: Tailoring the interface between carbon electrodes and electroactive bacterial films, Bioelectrochemistry, vol.120, p.70, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695553

N. L. Costa, T. A. Clarke, L. Philipp, J. Gescher, R. O. Louro et al., Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins, Bioresource Technology, vol.255, pp.308-317, 2018.

L. Shi, K. M. Rosso, T. A. Clarke, D. J. Richardson, J. M. Zachara et al., Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1, Frontiers in Microbiology, vol.3, p.50, 2012.

N. L. Costa, H. K. Carlson, J. D. Coates, R. O. Louro, and C. M. Paquete, Heterologous expression and purification of a multiheme cytochrome from a Gram-positive bacterium capable of performing extracellular respiration, Protein Expression and Purification, vol.111, pp.48-52, 2015.

A. Okamoto, Y. Tokunou, S. Kalathil, and K. Hashimoto, Proton Transport in the OuterMembrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport, Angewandte Chemie International Edition, vol.56, issue.31, pp.9082-9086, 2017.

C. I. Torres, A. K. Marcus, and B. E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnology and Bioengineering, vol.100, issue.5, pp.872-881, 2008.

K. L. Pankhurst, C. G. Mowat, E. L. Rothery, J. M. Hudson, A. K. Jones et al., A Proton Delivery Pathway in the Soluble Fumarate Reductase from Shewanella frigidimarina, Journal of Biological Chemistry, vol.281, issue.29, pp.20589-20597, 2006.

K. L. Turner, M. K. Doherty, H. A. Heering, F. A. Armstrong, G. A. Reid et al., Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400, vol.38, pp.3302-3311, 1999.

C. M. Paquete, I. H. Saraiva, and R. O. Louro, Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1837, issue.6, pp.717-725, 2014.

M. Pessanha, E. L. Rothery, R. O. Louro, D. L. Turner, C. S. Miles et al., Redox behaviour of the haem domain of flavocytochrome c3 from Shewanella frigidimarina probed by NMR, FEBS Letters, vol.578, issue.1, pp.185-190, 2004.

E. Lebègue, R. O. Louro, and F. Barrière, Electrochemical Detection of pH-Responsive Grafted Catechol and Immobilized Cytochrome c onto Lipid Deposit-Modified Glassy Carbon Surface, ACS Omega, vol.3, issue.8, pp.9035-9042, 2018.

S. L. Pealing, M. R. Cheesman, G. A. Reid, A. J. Thomson, F. B. Ward et al., Spectroscopic and Kinetic Studies of the Tetraheme Flavocytochrome c From Shewanella putrefaciens NCIMB400, Biochemistry, vol.34, issue.18, pp.6153-6158, 1995.

P. S. Dobbin, J. N. Butt, A. K. Powell, G. A. Reid, and D. J. Richardson, Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400, Biochemical Journal, vol.342, issue.2, pp.439-448, 1999.

J. N. Butt, J. Thornton, D. J. Richardson, and P. S. Dobbin, Voltammetry of a Flavocytochrome c3: The Lowest Potential Heme Modulates Fumarate Reduction Rates, Biophysical Journal, vol.78, issue.2, pp.1001-1009, 2000.

L. J. Jeuken, A. K. Jones, S. K. Chapman, G. Cecchini, and F. A. Armstrong, ElectronTransfer Mechanisms through Biological Redox Chains in Multicenter Enzymes, Journal of the American Chemical Society, vol.124, issue.20, pp.5702-5713, 2002.

A. K. Jones, R. Camba, G. A. Reid, S. K. Chapman, and F. A. Armstrong, Interruption and Time-Resolution of Catalysis by a Flavoenzyme Using Fast Scan Protein Film Voltammetry, Journal of the American Chemical Society, vol.122, issue.27, pp.6494-6495, 2000.

M. Picot, L. Lapinsonnière, M. Rothballer, and F. Barrière, Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output, Biosensors and Bioelectronics, vol.28, issue.1, pp.181-188, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01151352

L. Lapinsonnière, M. Picot, C. Poriel, and F. Barrière, Phenylboronic Acid Modified Anodes Promote Faster Biofilm Adhesion and Increase Microbial Fuel Cell Performances, Electroanalysis, vol.25, issue.3, pp.601-605, 2013.

D. Belanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.40, issue.7, pp.3995-4048, 2011.

M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts, Journal of the American Chemical Society, vol.114, issue.14, pp.5883-5884, 1992.

P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts, Journal of the American Chemical Society, vol.119, issue.1, pp.201-207, 1997.

C. Léger, S. J. Elliott, K. R. Hoke, L. J. Jeuken, A. K. Jones et al., Enzyme Electrokinetics: Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanisms, vol.42, pp.8653-8662, 2003.

C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chemical Reviews, vol.108, issue.7, pp.2379-2438, 2008.

F. A. Armstrong, H. A. Heering, and J. Hirst, Reaction of complex metalloproteins studied by protein-film voltammetry, Chemical Society Reviews, vol.26, issue.3, pp.169-179, 1997.

D. Leys, A. S. Tsapin, K. H. Nealson, T. E. Meyer, M. A. Cusanovich et al., Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1, Nature Structural Biology, vol.6, p.1113, 1999.

C. Cougnon, F. Gohier, D. Belanger, and J. Mauzeroll, Situ Formation of Diazonium Salts from Nitro Precursors for Scanning Electrochemical Microscopy Patterning of Surfaces, vol.48, pp.4006-4008, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417304

C. Cougnon, N. H. Nguyen, S. Dabos-seignon, J. Mauzeroll, and D. Bélanger, Carbon surface derivatization by electrochemical reduction of a diazonium salt in situ produced from the nitro precursor, Journal of Electroanalytical Chemistry, vol.661, issue.1, pp.13-19, 2011.

E. Lebègue, H. Smida, T. Flinois, V. Vié, C. Lagrost et al., An optimal surface concentration of pure cardiolipin deposited onto glassy carbon electrode promoting the direct electron transfer of cytochrome-c, Journal of Electroanalytical Chemistry, vol.808, pp.286-292, 2018.

G. Pognon, C. Cougnon, D. Mayilukila, and D. Belanger, Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor, Applied Materials & Interfaces, vol.4, issue.8, pp.3788-96, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01388860

J. A. Mayfield, C. A. Dehner, and J. L. Dubois, Recent advances in bacterial heme protein biochemistry, Current opinion in chemical biology, vol.15, issue.2, pp.260-266, 2011.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 1980.