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Abstract

The present study has investigated the scope for valuation of agro-resources by-products as aggregates

and as binding material to produce rigid fully bio-based composite panels. Two types of aggregates:

hemp shiv and corn cob residues (obtained after alkali treatment on the corn cob), and six types of green

binders are investigated. Specimens are produced to verify the gluing effect, to characterize mechanical,

thermal and hygric properties of developed composites and to identify the best aggregate-binder mixture.

They show interesting thermal conductivity ranging from 67 to 148 mW/(m.K) at dry state, excellent

hygric properties (MBV > 2 g/(m2.%RH)) and high enough mechanical properties to be self bearing.

These results suggest that developed composites can be used as building materials but not for the same

types of use. In fact, some composites would be more suitable for thermal insulating products and others

would be better suited for indoor facing panels.
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1. Introduction

Nowadays, the building sector is one of the three most energy consuming sectors with industry and

transport, particularly because of heating, ventilation and air conditioning systems that ensure indoor

thermal comfort. So, building well insulating buildings is important to save energy more efficiently, in

particular by reducing heat transfer through the envelopes [1, 2, 3]. Hence, there is a high demand for5

renewable, environmentally friendly, low cost and high thermal resistance insulation materials [2]. One

way to address these objectives is the development of green insulating materials to replace conventional

ones [4].

A bio-based material is a material obtained from raw material of mainly biological origin, preferably

requiring very little processing. Fossil resources are excluded, so materials from renewable biomass10

animal or plant are mainly considered.

This type of material can lead to excellent hygrothermal performance. They have the ability to

moderate humidity of the indoor air by adsorbing and desorbing water vapor which allows to reduce

the ventilation rate and thus, the need for heating in winter and for air conditioning in summer [5, 6].

Moreover, they are renewable and environmentally friendly unlike some traditional thermal insulators15

such as mineral wool which have poor environmental performance. Indeed, various pollutants such as

COx, NOx, SOx, volatile organic compounds and particles are emitted during their energy-intensive

production [2, 4]. The most commonly used bio-based materials are wood, straw, hemp, corn, or sheep

wool. Even if wood is the most developed and able to compete with traditional insulation materials,

other materials are used more and more, such as cellulose wadding or hemp concrete [2, 5, 4].20

This study investigates the development of fully bio-based composites to be used to produce rigid in-

sulating panels. Firstly, six green binders are used. Two bio-binders are developed, they are obtained by

the extraction process on corn cobs and on flax fines. Others come from the industry such as black liquor
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(by-product from the paper industry), molasses (by-product from the sugar industry), commercial lignin

(by-product from the wood industry) and the PLA (thermoplastic binder from renewable resources).25

Secondly, two types of aggregates: hemp shiv and corn cob residues (obtained after alkali treatment on

the corn cob) for their good hygric property, are considered. Then, specimens are produced to verify

the gluing effect, to qualify the mechanical properties and the hygrothermal performances of developed

composites. The aim of these characterizations, in link with the objectives in terms of reduction of

the energy needs of buildings and in terms of hygrothermal comfort of users, is to identify the best30

aggregate-binder mixture.

2. Materials and methods

2.1. Raw materials

2.1.1. Binders

Interesting gluing effect is quoted in the case of compressed straw panels, where no additional binder35

is needed to provide a minimum of cohesion. The raw material is just cleaned and compressed between

two hot plates where it undergoes a hydrothermal treatment at 200◦C (as the STRAMIT Process

[7]). The cohesion of the obtained material is then ensured by the released lignin (between 8 and 17

%), hemicellulose (between 28 and 33 %) and cellulose (between 33 and 42 %) from wheat straw [8].

Based on this observation, it is possible to use the components contained in the bio-based aggregates to40

formulate a green binder.

Initial work was done to evaluate the ability of hemp shiv to be bonded by wheat straw using similar

process with hydrothermal treatment and compression. Hemp shiv was mixed with wheat straw chopped

with a lab blender to obtain bio-based composites. Several compositions were tested; it was shown that

wheat straw ensured a good cohesion to the composite when the dry mix included at least 15 w% of45

chopped wheat straw [9].
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Another process is investigated in this study to obtain bio-binder by extraction of soluble components.

The extraction process consists in infusing wheat straw in solvent for several hours. Then, wheat straw

is pressed in order to collect all the solvent. This solvent is partially evaporated in order to control the

concentration of the solution (Figure 1).50

Figure 1: The extraction process on bio-aggregates

Several trials are achieved to identify the optimum conditions. Indeed many factors can affect the

efficiency of the extraction process:

• The maceration time;

• The grain size of aggregate;

• The nature of solvent;55

• The solvent concentration.

From these trials, the optimum identified conditions are a maceration in alkali solvent during 4 hours

at 90◦C. The best solvent types and concentrations are deduced.

This process is then applied to several raw materials: hemp shiv and fines, flax shiv and fines, rape

straw, wheat straw and corn cobs. These raw materials are supplied by CAVAC, industrial partner of60

ISOBIO project, and are presented in other paper [10]). Two raw materials allow to have extracts with

good gluing properties and a satisfactory extraction yield (over 30 %): corn cobs and flax fines. The

weight loss of agro-resources due to the extraction in the alkali solvent, is 39.51 % for the corn cobs and
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is 24.27 % for the flax fines. The Van Soest method described in [10], gives the chemical composition

including weight loss of the corn cobs and the flax fines before and after extraction (Table 1 and Figure65

2). The materials after extraction are called residues, the binders obtained after extraction are named

corn cob extract and flax fine extract.

Table 1: Chemical composition of corn cobs and flax fines before and after the alkali-treatment (including weight loss)

Agro-resources Cellulose (%) Hemicellulose
(%)

Lignin (%) Solubles (%) Ash (%)

Corn Cobs 36.78 ± 0.96 38.81 ± 0.72 3.30 ± 0.10 19.30 ± 1.74 0.46 ± 0.01
Corn cob residues 27.10 ± 0.47 13.87 ± 0.86 0.64 ± 0.09 17.53 ± 1.23 0.43 ± 0.07
Flax fines 28.51 ± 0.79 15.80 ± 0.26 18.14 ± 0.28 29.15 ± 0.35 4.20 ± 0.07
Flax fine residues 16.21 ± 1.09 5.83 ± 0.71 7.74 ± 0.47 42.89 ± 3.60 2.92 ± 1.09

Figure 2: The chemical composition of the corn cobs (up) and flax fines (down) before and after the alkali-treatment (C:

Cellulose, H: Hemicellulose, L: Lignin, S: Solubles and A:Ash)

For corn cobs, the alkali treatment leads to substantial removal of cellulose (36.8 % before against

27.1 % after), hemicellulose (38.8 % before against 13.9 % after) and lignin (3.3 % before against 0.7

% after) but only modest dissolution of solubles content (19.3 % before against 17.5 % after) and ash70

content (0.5 % before against 0.4 % after). For flax fines, the alkali treatment leads to substantial

removal of cellulose (28.5 % before against 16.2 % after), hemicellulose (15.8 % before against 5.8 %
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after) and lignin (18.1 % before against 7.7 % after), only modest dissolution of ash content (4.2 %

before against 2.9 % after) but a significant increase of solubles (29.1 % before against 42.9 % after).

These differences can be explained by the weight loss after the treatments. Indeed, the main ad-75

vantage of alkali treatment is efficient extraction of hemicellulose, lignin and pectin which allows to

increase the exposed surface area for the reaction sites for further polymerization. However, this type

of treatment has the disadvantage of forming salt and generating degradation if the time of treatment

is too long. These degradations can lead to glycosidic bond (O between two aromatic rings in cellulose,

hemicellulose and pectins) break which may change the structure with the repolymerization of released80

monomer units, the cellulose swelling and its partial decrystallization (Figure 3) [11, 12, 13, 14].

Figure 3: Schematic of alkali-treatment effects on agro-resources [12]

Thus, solutions of alkaline extract from the corn cobs and the flax fines are composed of cellulose, of

hemicellulose, of lignin, of solubles and of ash or of their monomer units, repolymerized or not, following

the alkali treatment. These components play the role of binder during composite curing (2 hours at

190◦C) which allows to initiate repolymerization reactions.85

Three other binders are selected as bio-binders coming from the industry: black liquor (waste from

the paper industry), molasses (by-product from the sugar industry) and commercial lignin (by-product

from the wood industry, Biochoice R©powder provided by Domtar).
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The last selected binder is a biodegradable thermoplastic from renewable resources: the Poly-Lactic

Acid (PLA provided by Galactic - Belgium). This polymer is characterized by very high mechanical90

properties (flexural strength of 17.8 MPa and compression strength higher than 50 MPa, elastic modulus

of 3500 MPa) and glass transition temperature around 180◦C. PLA is marketed in granular form. To

be used, it is reduced in chips.

Finally, six types of binders are considered in this study : two green binders which are specifically

developed here and four binders coming from the industry.95

2.1.2. Aggregates

Two types of aggregates are considered in this study (Figure 4).

The hemp shiv is a commercial product (Biofibat – CAVAC, France) commonly used to produce

hemp concrete. Its bulk density is about 100 to 110 kg/m3. The average width of aggregates (W50) is

2.2 mm and the average length (L50) is 8 mm. The maximal width is 5 mm and the maximal length is100

19 mm.

The corn cob is the part of the ear on which kernels grow and is thus, a by-product coming from

corn cultivation. It is processed to obtain aggregates. The bulk density is about 390 kg/m3. The

average width of aggregates is 3.78 mm and the average length is 5.15 mm. The maximal width is

4.77 mm and the maximal length is 6.47 mm. This aggregate is used to make a green binder with its105

soluble components in the alkali solvent and the corn cob residues obtained are used as aggregates in

the composite formulations. After the extraction, the bulk density of the corn cob residues is about 365

kg/m3.
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Figure 4: Aggregates used to test composite formulations

2.2. Composites

2.2.1. Design of experiment (DOE)110

This study investigates the effect of formulation on multi-physical properties of composites. Two

types of aggregates and six types of binders are tested. To get a large amount of information, screening

design is used: Hadamard matrix. This experience design will allow to understand the effects of factors

on the composites properties (thermal conductivity and moisture buffer value) [15]. One factor has 2

levels, for aggregates (hemp shiv or corn cob residues), and one other factor has 7 levels, for binders115

(without binder, corn cob extract, flax fine extract, black liquor, BioChoice R© lignin, Molasses or PLA).

Then, this experimental design is converted in experiment matrix, which is a mathematical entity. It

includes as many lines (noted n) as formulations and as many columns (noted p) as unknown coefficients

in the model. This experimental design can be rewritten in the form of the following equation:

{Y} = {B}[X] + {e} (1)

with:120

• {Y}: response vector;

• [X]: matrix of the model;

• {B}: coefficient vector;
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• {e}: vector of the gaps.

The mathematical analysis allows to estimate the coefficients {B} and the residues {e} by the least125

squares method. The effects of the factors on the responses are calculated as:

{B} = [tXX]−1[tX]{Y} (2)

where [tXX]−1 is a dispersion matrix and [tX] is the transpose of the matrix. Once the Bi coefficients

are determined, they are used in the following equation to predict the responses yi.

yi = B0 +B1.x1 +B2.x2 +B3.x3 +B4.x4 +B5.x5 + [...] + ∆ + ε (3)

with:

• yi: response;130

• xi: level of the factor;

• B0: theoretical average value of the response (constant);

• Bi: effect of the factor;

• ∆: the lack of fit;

• ε: random error.135

The robustness of the defined model is tested with two tools: F-test for the significance of the model

and the t-test for significance of the coefficients.

The analysis of variance (ANOVA) studies the differences of average between the experimental and

theoretical responses. It determines if the defined model is significant or not. The total variation in
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Y (total sum of squares, SSTO) is divided into two components: the one is the regression equation140

component (regression sum of squares, SSR) and the other is the residual component (error sum of

squares, SSE). The first is tested in comparison with the second. These components are the sum of the

squared deviations and their equations are summarized in the following analysis of variance table (Table

2).

Table 2: Standard analysis of variance table

Source of variation Degrees of
freedom

Sum of square Mean square Fisher

Regression p SSR MSR =
SSR

p
F ∗ =
MSR

MSEResidual error n− p− 1 SSE MSE =
SSE

n− p− 1

Total n− 1 SSTO

with:

SSR =
∑

(yi − ŷi)2 (4)

SSE =
∑

(ŷi − ȳi)2 (5)

SSTO = SSR + SSE (6)

where yi are the experimental responses, ŷi are the theoretical responses and ȳi is the average145

response. Then the F ∗ ratio is compared to a critical variable taken in F-table for α = 5 % (risk). Thus,

if F ∗ is higher than the considered critical level, the model is considered to be statistically significant.

Another statistical analysis is performed on the coefficients (Table 3).

Table 3: Table of statistical analysis of the coefficients

Coefficient σ texp Significance

Bi σi =
√
MSE × cii texp,i= =

Bi

σi
texp > tth

with:

10



• σi: standard deviation of Bi;150

• cii: diagonal term of the level i of the [tXX]−1 dispersion matrix.

Then the texp is compared to a critical variable from the t-distribution for α = 5 % (risk). Thus,

if texp is higher than tth, the factor effect is considered to be statistically significant. If a coefficient

is considered not relevant, it is possible to eliminate it but its impact on the adjusted determination

coefficient R2
A will need to be evaluated.155

In the presence of several variables, the determination coefficient R2 is not suitable to compare the

descriptive quality of the different models. The use of the adjusted coefficient of determination R2
A is

required. This coefficient takes into account the number of variables present in the model. Its calculation

is given by the equation:

R2
A = R2 × n− 1

DF
= 1−

∑
(y2i )

(n− 1)× var(yi)
× n− 1

n− p− 1
(7)

The closer to 1 the R2
A is, the closer to experimental values the calculated values will be [16, 17].160

Finally, the interaction graph and the path diagram give the synthetic analysis of the results.

2.2.2. Composite production process

Table 4 shows the formulation of the produced composites.

The binder is dissolved in water and then the bio-aggregates are moistened with the solution, except

for PLA where PLA chips are mixed with bio-aggregates and the mix is then moistened with water.165

To ensure a good cohesion, a content of 15 % by weight of dry binder is used. In order to produce

three specimens (100 × 100 × 100 mm3) for each composite, the mix is divided into three equal parts

and each part is introduced in one of the three cells of the mold. After, in order to reach an efficient

compaction of composite, each part undergoes 5 compression cycles at 0.25 MPa in the mold. At the end
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Table 4: Formulation of composites

N◦ Aggregates
(A)

Binder (B) B/A ratio

0A Hemp shiv Without 0 w%
1 Hemp shiv Corn cob

extract
15 w%

2 Hemp shiv Flax fine
extract

15 w%

3 Hemp shiv Black liquor 15 w%
4 Hemp shiv BioChoice R© lignin 15 w%
5 Hemp shiv Molasses 15 w%
6 Hemp shiv PLA 15 w%
0B Corn cob

residues
Without 0 w%

7 Corn cob
residues

Corn cob
extract

15 w%

8 Corn cob
residues

Flax fine
extract

15 w%

9 Corn cob
residues

Black liquor 15 w%

10 Corn cob
residues

BioChoice R© lignin 15 w%

11 Corn cob
residues

Molasses 15 w%

12 Corn cob
residues

PLA 15 w%
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of the 5 cycles, the specimen remains compacted and the pressure is considered constant at 0.25 MPa.170

The whole is then placed in an oven at 190◦C for 2 hours for thermal curing. The three specimens are

demolded after free cooling (Figure 5).

Figure 5: The production of composites

Figure 6 shows the produced composites. The composites n◦11 and n◦12 show bad cohesion between

the binders (molasses and PLA) and the aggregates (corn cob residues). They can’t be produced and

characterized.175

Figure 6: Developed composites

2.3. Characterization

2.3.1. Apparent density

The density is calculated from size and weighted of specimens. The three dimensions are measured

with an electronic caliper (0.1 mm) and weight with an analytical balance (readability = 0.01 g, repro-

ducibility = 0.01 g, linearity = 0.02 g). Each dimension is the average of four values. This method180
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follows the recommendations of the standard NF EN ISO 12570 [18] which are a measure of volume at

close to 1 % and a measure of mass at close to 0.1 % to calculate the apparent density of composites.

2.3.2. Skeleton density

The skeleton density ρs is measured with pycnometers [19]. The dry and crumbled composites are

placed in pycnometers. Then, they are immersed in toluene and regularly shaken until there is no air185

remaining. The pycnometers are completely filled with toluene. The successive weighing of pycnometers

(m1), pycnometers with dry samples (m2), pycnometers with dry samples and toluene-filled (m3) and

water-filled pycnometers (m4) leads to the mass of the samples and their volume (Figure 7). The density

of toluene is also measured by pycnometer, filling it with toluene and water. Three pycnometers of about

600 ml are used for each composite.190

Figure 7: Skeleton density measurement protocol

From the measured weightsm1,m2,m3 andm4, the skeleton density ρs of the composites is calculated

from the equation (8).

ρs =
msample

Vsample

=
msample

Vpycno − Vtoluene
=

m2 −m1

m4

ρwater −
m3 −m2

ρtoluene

(8)

Where the density ρtoluene corresponds to the density of the toluene and the density ρwater corresponds

to the density of water. The densities ρtoluene and ρwater are temperature-dependent.
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2.3.3. Total porosity195

The total porosity nt of composite is the sum of closed and open porosity and intergranular macrop-

orosity. Assuming that the entire porosity has been accessed during pycnometer measurement, the total

porosity results in the equation (9).

nt =
ρs − ρapp

ρs
(9)

with ρs which corresponds to the the skeleton density of the sample and ρapp to its apparent density.

2.3.4. Surface Morphology by Scanning Electron Microscopy200

SEM is used to view the gluing between aggregates and binder. Some aggregates with binder are

manually removed from a composite, glued with araldite glue and coated with a layer of palladium

(thickness about 30 nm) before the characterization. Scanning electron microscopy (SEM) is performed

with a JSM 7100F (Jeol) equipped with Everhart-Thornley secondary electron detector and Schottky

field emission.205

2.3.5. Mechanical characterization

Compressive tests are performed with a Zwick/Roell ProLine testing machine fitted with a 20 kN

XForce load cell (load up to 0.02 % of its full capacity and 0.05 % readability) in order to check that

the composites are self-bearing. The tests are carried out in displacement with a cross-head speed equal

to 0.05 mm.s−1. The loading is monotonous (no loading cycles) with testing direction parallel to the210

compression direction during the production. The samples are placed between two steel plates in order

to guarantee a homogeneous displacement and pressure. The load is applied by the displacement of the

upper plate. The test is performed on 3 samples for each formulation.

The results of the mechanical tests are analyzed using stress-strain curves, according to the NF EN

826 standard [20]. The stress is assessed by reporting the load to the initial surface of the sample and215
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the deformation is relative to the initial height of the sample. The origin of the stress-strain curve is

adjusted in order to free itself from the contact effects between the plates and the surface of the samples,

which is not perfectly flat.

2.3.6. Thermal characterization

The measurement of thermal conductivity is performed with a transient method: Hot Wire, following220

the method described by Collet and Pretot [21]. The measurement is realized with the commercial CT

Meter device equipped with a five-centimeter long hot wire. The power is 142 mW (n◦1 to 4) or 205 mW

(n◦5 to 10) and the heating time is 120 seconds. The probe is placed perpendicular to the compression

direction during production of composites.

Before taking the measurements, the specimens are first dried at 60◦C in an oven. Then, the225

measurements are performed after weight stabilization at 23◦C at dry state in desiccator and after weight

stabilization at 23◦C, 50 %RH in climate chamber. For each formulation, three pairs of specimens (A&B,

A&C, and B&C) are measured. The thermal conductivity of a pair is the average of three values with

a coefficient of variation lower than 5 %. The thermal conductivity of a composite is the average of the

values obtained for the three pairs (Figure 8).230

2.3.7. Hygric characterization

The hygric performance is characterized by the measurement of the moisture buffer value (MBV) of

composites. This value characterizes the ability of the materials to moderate the variations of indoor

humidity in buildings.

The moisture buffer value is performed following the Nordtest protocol [22]. After the stabilization235

of specimens at 23◦C, 50 %RH and their sealing on all their surfaces except one (the one that has been

compressed during the production of composites), specimens are exposed for 8 hours at 75 %RH and for

16 hours at 33 %RH during 5 days in a climate chamber (Vötsch VC4060). The specimens are regularly

16



Figure 8: Experimental device for the measurement of thermal conductivity

weighed: five times during the absorption period and two times during the desorption one. The air

velocity in the climate chamber is consistent with the recommendations of the Nordtest protocol (lower240

than 0.15 m/s [22]). Then, the moisture buffer value is determined according to the following equation:

MBV =
∆m

A.(RHhigh −RHlow)
(10)

Where MBV is the moisture buffer value (g/(m2.%RH)), ∆m is the moisture uptake/release during

the period (g), A is the open surface area (m2), RHhigh/low is the high/low relative humidity level (%).

For each formulation, the MBV is the average of the values obtained for the three specimens.

3. Results245

3.1. Apparent and skeleton densities and total porosity

Except for composite n◦6, the composites based on hemp shiv have very close densities ranging from

177 to 191 kg.m3 at dry state except the hemp shiv with PLA composite (n◦6) which has the highest

density (273 kg/m3). The composites based on corn cob residues have a density much higher than

composites based on hemp shiv, due to a much higher aggregate density. The three composites, with250
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the aggregate extracts and black liquor, have very close densities ranging from 520 to 557 kg/m3 at dry

state. The composite with the lignin has the lowest density (457 kg/m3 at dry state) of the composites

based on corn cob residues. The increase in apparent density between the dry state and the state at

(23◦C; 50 %RH) ranges from 2.09 % (for the one made with hemp shiv and PLA) to 7.52 % (for the

one made with corn cob residues and flax fine extract).255

The skeleton density of composites ranges from 1124.6 to 1211.0 kg/m3 for hemp shiv composites

and from 1238.8 to 1310.0 kg/m3 for corn cob residues composites. The highest values of corn cob

residues composites are due to higher skeleton density of aggregate (about 1350 versus 1550 kg/m3).

The variation of skeleton density with binder shows the same trend for hemp shiv composites and corn

cob residues composites. However, it does not vary only with the proportion of each component due to260

chemical reaction and volatilization during the production of composites.

The composites based on hemp shiv have very close total porosities ranging from 84.2 % to 87.5 %

except the one made with PLA. Indeed, it has the lowest total porosity (77.5 %) of the composites made

with hemp shiv. However, the composites made with corn cob residues have lower total porosity than

the composites made with hemp shiv. Indeed, they have very close porosities ranging from 60.0 % to265

65.5 %.

Table 5: Apparent density at (23◦C, 50%RH) and (23◦C, dry), skeleton density and total porosity of composites:
average value and standard deviation

Composites 1 2 3 4 5 6 7 8 9 10

ρ23◦C−50%RH 177.7 179.6 191.4 179.0 187.4 272.9 519.9 556.9 527.0 457.3
(kg/m3) ± 2.4 ± 5.7 ± 0.9 ± 1.3 ± 1.4 ± 18.9 ± 9.8 ± 9.7 ± 5.4 ± 15.3
ρ23◦C−dry 167.0 168.8 180.7 170.9 177.4 267.2 481.4 515.0 488.4 427.0
(kg/m3) ± 2.1 ± 5.3 ± 0.9 ± 1.1 ± 1.1 ± 19.0 ± 8.6 ± 7.8 ± 4.7 ± 14.0
ρs 1130.9 1178.0 1211.0 1150.1 1124.6 1186.9 1249.8 1286.7 1310.0 1238.8
(kg/m3) ± 7.3 ± 12.5 ± 7.2 ± 2.4 ± 16.9 ± 57.7 ± 1.4 ± 9.8 ± 1.4 ± 6.4
ntot 87.5% 85.7% 85.1% 85.1% 84.2% 77.5% 61.5% 60.0% 62.7% 65.5%
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3.2. Surface Morphology by Scanning Electron Microscopy

Figure 9 presents SEM micrographs at the interface between the aggregates and the binder. For

all composites, SEM analysis evidences good adhesion at the interface showing several hemp shiv well

coated and glued together. There are micro-structural differences at the interface between the aggregates270

and the different types of binders.

The surface of composites n◦1 and 2 and 3 (Figures 9.a to 9.d) are similar. The binders lead to a

grain deposit on the hemp shiv.

For composite n◦4 (Figure 9.e), the hemp shiv are well coated with lignin in some places. The lignin

coats the hemp shiv with a more or less thin smooth film depending on the location. Thus, the adhesion275

between aggregates and binder is good but the increased thickness of the binder may seal the hemp shiv

pores in some places.

For composite n◦5 (Figure 9.f), the hemp shiv are well coated with molasses. The molasses coat the

hemp shiv with a thin rough film.

For composite n◦6 (Figure 9.g), the hemp shiv are well coated with PLA in some places. A few large280

spots of PLA are visible between the hemp shiv so, the PLA coats the hemp shiv with a thick smooth

film. Thus, the adhesion between aggregates and binder is good but the thickness of the binder seals

the hemp shiv pores and fills the inter-particular space. Indeed, the total porosity is 77.5 % while it is

around 85.5 % for other composites made with hemp shiv.

The surface of composites n◦7 and 8 (Figures 9.h to 9.j) are similar but different from composites285

made with hemp shiv for a same binder. It can be explained by the difference in the composition of

agro-resources. Indeed, the corn cob residues have been previously treated with an alkaline solution at

90◦C. Thus, their surface is more reactive [12, 14] than that of hemp shiv for a same binder. The corn

cob residues are coated with a thin smooth layer in some areas but several fracture zones are visible

above. More, the composite surfaces include sodium silicate crystals for composites n◦7 and 8. A similar290
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Figure 9: SEM micrographs at the interface between the aggregates and the binder: (a) and (b) composite n◦1, (c)

composite n◦2, (d) composite n◦3, (e) composite n◦4, (f) composite n◦5, (g) composite n◦6, (h) and (i)composite n◦7, (j)

composite n◦8, (k) composite n◦9 and (l) composite n◦10
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surface has been observed by El Hajj et al. for their composites made with flax shiv and proteinic binder

[23].

For composite n◦9 (Figure 9.k), the corn cob residues are well coated with black liquor. The black

liquor coats the corn cob residues with a thick rough film. The roughness probably corresponds to

mineral salts containing silicates. The adhesion between the corn cob residues and the black liquor295

seems to be less good than with the extracts.

For composite n◦10 (Figure 9.l), the corn cob residues are well coated with lignin. The lignin coats

the corn cob residues with a thick rough film which includes several fracture zones. The roughness

probably corresponds to mineral salts containing silicates.

3.3. Mechanical characterization300

Two types of strain-stress curve are obtained.

Curves with a continuous increase in the stress versus strain correspond to compacting behavior

(Figure 10.a). For such behavior, the mechanical performance is given by the compressive strength σ10%

obtained for longitudinal strain ε = 10 % (Figure 10.a) [20]. Such curves are obtained for hemp shiv

composites and corn cob residues composites with extract binders.305

Curves with a peak in the stress-strain curve correspond to ductile behavior (Figure 10.b). For

such behavior, the mechanical performance is given by the maximal compressive strength σm obtained

for deformations εm under 10 % (Figure 10.b) [20]. Such curves are obtained for corn cob residues

composites with black liquor and BioChoice R© lignin.

This behavior difference is mainly explained by the shape of the aggregates (rectangular for hemp310

shiv and ovoid for corn cob residues) as well as the total porosity of the composites (about 84.2 % for

those made with hemp shiv compared to about 62.4 % for those made with corn cob residues).

The mechanical properties of composites are presented in Figure 11 and Table 6. Experimental values
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Figure 10: Strain-stress curve for composites 4.b (a) and 9.b (b)

are closer to each other formulation for the composites made with the hemp shiv than those made with

the corn cob residues. As shown on Figure 11, the compressive strength for the composites made with315

the hemp shiv and extracts is around 239 kPa whereas the other composites made with the hemp shiv

have a better compressive strength due to a better adhesion between the hemp shiv and the binders

(range from 227 to 421 kPa). The composite made with hemp shiv and PLA has the highest compressive

strength of composites made with hemp shiv. Compressive strength at 10 % deformation, varies between

492 and 696 kPa for the two specimens made with corn cob residues and extract. Composites n◦7 have320

the highest compression strength. Thus, the corn cob residues have a good adhesion with the extracts

(corn cob extract and flax fine extract) although it is better with the corn cob extract. However, the

corn cob residues have a poor adhesion with the other binders (black liquor and BioChoice R© lignin)

because the maximal compressive strengths are 202 and 32 kPa respectively for a deformation lower

than 7.4 %.325

The compressive strength at 10 % deformation of composites is higher than 225 kPa except compos-

ites n◦9 and n◦10 (corn cob residues/black liquor and corn cob residues/BioChoice R© lignin). According

to the composite densities, for stress corresponding to 3 meters in height, the obtained deformations

(εh=3m) are lower than 0.50 %. So, the mechanical properties are sufficient for an application as insulation
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panels without risk of compaction.330

Figure 11: Stress at 10 % deformation or maximal stress versus apparent density at 23◦C and 50 %RH of composites

Table 6: Stress at 10 % deformation or maximal stress for each composites

Composites 1 2 3 4 5 6 7 8 9 10

ρ23◦C−50%RH 184.2 181.9 203.2 184.4 175.6 271.7 534.5 526.8 573.4 445.9
(kg/m3) ± 4.1 ± 3.1 ± 1.1 ± 0.7 ± 2.1 ± 26.0 ± 3.5 ± 4.8 ± 6.7 ± 6.5
σ10% 259.7 227.5 230.0 297.3 313.7 420.8 695.7 491.8 - -
(kPa) ± 34.2 ± 9.9 ± 6.5 ± 4.2 ± 2.4 ± 25.7 ± 42.7 ± 47.8 - -
σm - - - - - - - - 202.3 31.9
(kPa) - - - - - - - - ± 32.7 ± 7.4
εm (%) - - - - - - - - 7.28 2.95
εh=3m (%) 0.20 0.22 0.22 0.16 0.14 0.13 0.36 0.47 0.47 2.95

Compared with compressive strength at 10 % deformation obtained in the literature, these values

are lower. Indeed, Nguyen et al [24], who studied composites made with bamboo fibers and bio-glues

have obtained better results as they range from 2700 to 14200 kPa (densities from 311 to 538 kg/m3).

Beside, the hemp-starch composites developed by Bourdot et al [25] have similar mechanical properties

except the one made with corn cob residues and corn cob extract which have better properties (around335

700 kPa for density around 125 kg/m3 at 10 % deformation).

Compared with maximal compressive strength obtained by Ratiarisoa et al [26] for the composites

made with residues of lavender and mineral pozzolanic binder this value (220 kPa for density around

620 kg/m3 at dry state) is slightly better than this obtained for the composites made with corn cob

residues and black liquor (203 kPa).340

23



3.4. Thermal characterization

To validate thermal conductivity measurement, an infrared thermography picture is taken on each

specimen immediately after the measurement. For all specimens, all the volume influenced by the probe

is included in the specimen volume, as shown as examples on Figure 12 for composites n◦5 (left) and

n◦8 (right). The thermal footprint shows that ¬: the heat flow remains in the sample during the345

measurement and that ­: the probe volume is representative of the material. Thus, the measurements

are representative of the studied materials.

Figure 12: Infrared thermography pictures of specimens 5 (on the left) and 8 (on the right) immediately after the

thermal conductivity measurement

Table 7 and Figure 13 show the thermal conductivity for the different formulations developed in this

study.

Table 7: Thermal conductivity of composites (mW/(m.K)) versus apparent density at (23◦C, 50%RH) and at (23◦C, dry)

Composites 1 2 3 4 5 6 7 8 9 10

ρ23◦C−50%RH 176.4 178.5 190.4 178.1 186.1 272.7 513.0 547.5 521.5 455.7
(kg/m3) ± 2.1 ± 5.6 ± 1.0 ± 1.3 ± 1.1 ± 19.3 ± 8.7 ± 7.9 ± 5.4 ± 17.0
λ23◦C−50%RH 78.5 78.1 78.2 75.6 77.8 81.2 156.9 171.6 157.7 143.5
(mW/(m.K)) ± 1.3 ± 1.8 ± 3.3 ± 1.8 ± 1.6 ± 4.0 ± 5.3 ± 4.5 ± 5.1 ± 2.8
ρ23◦C−dry 167.0 168.8 180.7 170.9 177.4 267.2 481.4 515.0 488.4 427.0
(kg/m3) ± 2.1 ± 5.3 ± 0.9 ± 1.2 ± 1.1 ± 19.0 ± 8.6 ± 7.9 ± 4.7 ± 14.0
λ23◦C−dry 70.8 70.2 71.1 67.5 70.5 78.6 140.3 147.9 136.5 128.4
(mW/(m.K)) ± 0.9 ± 1.2 ± 1.5 ± 1.3 ± 0.8 ± 1.7 ± 4.1 ± 4.7 ± 4.8 ± 4.7

At dry state, the thermal conductivity of developed composites ranges from 67.5 to 78.6 mW/(m.K)350
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for hemp shiv composites and from 128.4 and 147.9 mW/(m.K) for corn cob residues composites. The

lowest values of hemp shiv composites are due to lower thermal conductivity of aggregate (53.5 versus

85.1 mW/(m.K)).

The composite with the PLA has a thermal conductivity slightly higher than the others made with

the hemp shiv. The composite with the BioChoice R© lignin has a thermal conductivity slightly lower355

than the others made with the corn cob residues.

As shown on Figure 13.a, the thermal conductivity of the composites increases linearly with density.

The correlation coefficient of the fitting curve is very close to 1.The slope of the regression curve for the

composites (yellow curve), is more important than the slope of the regression curve for the aggregates

(green curve corresponding to bio-aggregates studied in [10]). Thus, the thermal conductivity increases360

more quickly with the apparent density in the case of the composites.

As shown on Figure 13.b, the thermal conductivity of the composites is higher at (23◦C; 50 %RH)

than at (23◦C; dry). The regression lines of the thermal conductivity versus the apparent density at dry

state and at 23◦C, 50 %RH are almost parallel but the intercept of the regression line for the composites

at dry state (yellow curve), is lower than the intercept of the regression line for the composites at 23◦C,365

50 %RH (orange curve). Indeed, the apparent density of the composites increases with the increased

ambient humidity (including an increase in water content), resulting in the increase in the thermal

conductivity.

To obtain additional information, the thermal conductivity values obtained at dry state, are ex-

ploited through the design of experiment. Following the F-test (analysis of variance), the model with 6370

coefficients is significant and has the best adjusted determination coefficient (R2
a = 0.9319) and deter-

mination coefficient (R2 = 0.9437). Thus, the equation to predict the thermal conductivity at dry state

is the following:
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Figure 13: Thermal conductivity of composites versus their apparent density : (a) Comparison between the composites

and the aggregates [10] at (23◦C; dry) and (b) Comparison between the thermal conductivity values of the composites at

(23◦C; dry) and at (23◦C; 50 %RH).

λi = 38.56 + 60.97× x1 + 36.35× x2 + 40.13× x3 + 34.75× x4 + 28.88× x5 (11)

Figure 14 shows the interactions between the aggregates and the binders. The slope of the lines for

the composites, whatever the binder, is more important than the slope of the line in the case of the375

bulk. The interaction between the hemp shiv and the binders is the same except for the PLA where

the interaction is more important. The lines of the corn cob extract and the black liquor are confused.

Their impact is the same on the thermal conductivity for these two aggregates. The interaction between

the corn cob residues and the binders is not the same. Indeed, it is more important for the flax fine

extract and less important for the BioChoice R© lignin.380

For an identical production process, Figure 15 shows that thermal conductivity increases when the

hemp shiv are replaced by the corn cob residues (B1 coefficient) and when the bulk is converted into

composites (coefficients B2, B3, B4 and B5). Indeed, the density of the composites increases with the use
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Figure 14: Interaction graph for the thermal conductivity at dry state (mW/(m.K))

of corn cob residues as aggregates. The binder with the least important impact is the lignin (coefficient

B5). The corn cob extract (coefficient B2) and the black liquor (coefficient B4) both have high impact385

on the thermal conductivity (nearly the same). The path diagram gives the flax fine extract the highest

impact. However, the impact of flax fine extract is much higher on corn cob composites than on hemp

shiv composites. Indeed, the impact induced by flax fine extract is not only due to the type of binder

but also to its effect on composite apparent density.

Figure 15: Path diagram for the thermal conductivity at dry state (mW.(m.K))

Compared with other bio-based composites, the hemp composites have higher thermal conductivity390

than commercial soft hemp insulation materials in the UK. Indeed, the thermal conductivity of the

commercial products ranges from 38 to 43 mW/(m.K) for density around 50 kg/m3 at dry state [27].

Thus, this difference is mainly explained by the lowest density of the composites found in literature.
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However, hemp-starch composites have a similar thermal conductivity. Indeed, the thermal conductivity

of hemp-starch ranges from 48 to 74 mW/(m.K) for density around 125 kg/m3 at dry state [25].395

The corn cob residues composites have higher thermal conductivity than the composites made with

bamboo fibers and bio-glues and similar to the composites made with residues of lavender and mineral

pozzolanic binder. Indeed, the thermal conductivity ranges from 55 for low density (311 kg/m3) to

88 mW/(m.K) for high density (538 kg/m3) at 25◦C and 57 %RH for the composites made with bamboo

fibers and bio-glues [24] whereas the thermal conductivity ranges from 142 to 162 mW/(m.K) for density400

around 620 kg/m3 at dry state for the composites made with residues of lavender and mineral pozzolanic

binder [26].

3.5. Hygric characterization

Figure 16 shows the ambient relative humidity and temperature in the climate chamber during

the test. The average value of relative humidity is slightly lower than 75 % during absorption (about405

71.4 %)and slightly higher than 33 % during desorption (about 35.5 %) due to the fact that the door of

the climate chamber is regularly opened to weigh specimens (peak on the curve).

Figure 16: Monitored relative humidity and temperature in the climate chamber during MBV test

An example of the moisture uptake and release of a specimen is shown by Figure 17. The change in

mass is lower than 5 % for cycles 3 to 5 for all composites. So, the moisture buffer value is determined
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from cycles 3 to 5.410

Figure 17: Moisture uptake and release for sample n◦1-A

Table 8, Figures 18 and 19 summarize the moisture buffer values obtained in absorption, desorption

and in average. The standard deviations are low, leading to coefficients of variation lower than 4.5 %.

The average MBV ranges from 1.86 to 5.08 g/(m2.%RH). According the Nordtest classification [22],

only composite n◦6 is good hygric regulator (1 < MBV < 2 g/(m2.%RH)). The others composites are

all excellent hygric regulators (MBV > 2 g/(m2.%RH)).415

As shown on Figures 18 and 19, the composites made with corn cob residues have a better MBV

than the composites made with hemp shiv for a same binder. That makes sense because in bulk, the

corn cob residues already have a better MBV than the hemp shiv.

The composites made from similar binders (corn cob extract, flax fine extract and black liquor)

and hemp shiv, have close MBV around 3.14 g/(m2.%RH). These composites have the best MBV of420

composites made with hemp shiv probably due to a grain deposit of the binder which increases the

specific surface area available for moisture adsorption. Composite n◦6, which has the lowest MBV

(1.86 g/(m2.%RH)), is made with hemp shiv and PLA. This is probably due to the fact that PLA

reduces the accessible porosity. The others composites made from hemp shiv have a MBV slightly

higher around 2.05 g/(m2.%RH). The composite made from similar binders (corn cob extract, flax fine425

extract and black liquor) and corn cob residues also have close MBV, around 4.90 g/(m2.%RH).

Thus, the MBV is impacted by the type of aggregate and binder, not only by bulk density.
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Table 8: Moisture Buffer Value of composites in absorption, desorption and average: average value and standard
deviation

Composites 1 2 3 4 5 6 7 8 9 10

MBVabs. 3.05 3.10 2.96 2.00 2.02 1.84 4.70 4.69 4.98 3.89
g/(m2.%RH) ± 0.11 ± 0.11 ± 0.14 ± 0.06 ± 0.05 ± 0.07 ± 0.07 ± 0.06 ± 0.21 ± 0.04
MBVdes. 3.19 3.23 3.09 1.89 2.09 1.89 4.88 4.95 5.19 4.10
g/(m2.%RH) ± 0.10 ± 0.13 ± 0.14 ± 0.06 ± 0.04 ± 0.09 ± 0.10 ± 0.07 ± 0.16 ± 0.07
MBVav. 3.12 3.16 3.12 2.05 2.05 1.86 4.79 4.82 5.08 3.99
g/(m2.%RH) ± 0.09 ± 0.11 ± 0.14 ± 0.06 ± 0.04 ± 0.07 ± 0.08 ± 0.06 ± 0.18 ± 0.05

Figure 18: Moisture buffer value (g/(m2.%RH)) versus composites

To obtain additional information, the results are exploited through the design of experiment.

Following the F-test (analysis of variance), the model with 8 coefficients is significant and has the

best adjusted determination coefficient (R2
a = 0.9886) and determination coefficient (R2 = 0.9909) which430

are close to 1. Thus, the equation to predict the moisture buffer value is the following:

MBVi = 2.38 + 0.86× x1 + 1.16× x2 + 1.20× x3 + 1.26× x4 + 0.23× x5 − 0.30× x6 − 0.48× x7

(12)

Figure 20 shows the interactions between the aggregates and the binders. The lines of the two

extracts are confused. Their impact is the same on the MBV for these two aggregates. The slope of the

lines for the black liquor and the BioChoice R© lignin are the same. However, the interaction between

the black liquor and the aggregates is better than the one of the BioChoice R© lignin. The interaction435

between the hemp shiv and the binders are the same for the extract binders and the black liquor. The
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Figure 19: Average moisture buffer value of composites (g/(m2.%RH)) versus apparent density

interaction between the hemp shiv and the other binders is less important as the synergy is negative.

The interaction between the corn cob residues and the binders is not the same. Indeed, it is more

important for the black liquor and less important for the BioChoice R© lignin.

Figure 20: Interaction graph for the moisture buffer value (g/(m2.%RH))

Figure 21 shows that MBV increases when the hemp shiv are replaced by the corn cob residues440

(coefficient B1) and when the bulk is converted into composites (coefficients B2, B3, B4 and B5). For

the coefficients B6 and B7, when the bulk is converted into composites, the MBV decreases. These

binders seal the pores of agro-resources because the shiv are coated with a thick film. The binder which

has the most important impact on the increase of the MBV is the black liquor (coefficient B4). The

binder with the least important positive impact is the BioChoice R© lignin (coefficient B5). The corn cob445

extract (coefficient B2) and the flax fine extract (coefficient B3) have nearly the same impact on the
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MBV. This impact is somewhat less important than the one of black liquor.

Figure 21: Path diagram for the moisture buffer value (g/(m2.%RH))

Compared with other bio-based composites, the hemp composites are in the average of the MBV.

For commercial hemp insulation materials in the UK, the MBV ranges from 1.5 to 2.7 g/(m2.%RH) [27],

while for hemp-starch, the MBV ranges from 2.4 to 3.4 g/(m2.%RH) [28].450

Compared with other bio-based composites, the corn cob residues composites have the highest MBV.

For the composites made with residues of lavender and mineral pozzolanic binder, the MBV ranges from

3.5 to 3.9 g/(m2.%RH) [26], while the composites made with bamboo fibers and bio-glues, the MBV

ranges from 2.5 to 3.5 g/(m2.%RH) [24].

4. Conclusion455

This study shows that it is possible to produce fully bio-based composites. Indeed, the use of these

combinations of binders and aggregates is very interesting from the environmental perspective because

local agriculture is given priority, waste and by-products are used in the production of these binders

where none additive is used.

Two green binders produced from alkaline extraction carried out on corn cobs and flax fines, have460

been developed throughout this work. This process allows to extract some cellulose, hemicellulose, lignin

and pectin content, repolymerized or not, with a good reactivity under heating. So, these extracts are
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used as binder. During the production of composites, the composite curing step allows to initiate the

repolymerization of components contained in the agro-resources extracts.

With a zero waste perspective, the corn cob residues that left after the alkali extraction are used as465

aggregates in this study. They have the advantage to have more important specific surface areas (for

further polymerization) than the untreated corn cobs. Their cohesion with binder should be better and

so, their mechanical properties improved. The performances of composites made with these aggregates

have been compared with those of composites made with hemp shiv.

The density of developed composites ranges from 177 to 273 kg/m3 with hemp shiv as aggregates,470

and ranges from 457 to 557 kg/m3 with corn cob residues as aggregates. Their mechanical perfor-

mances are sufficient to be used as self bearing materials. The thermal conductivity ranges from 67.5 to

147.9 mW/(m.K). It is mainly dependent on density but it is also slightly impacted by the type of binder.

Thus, the composites made with hemp shiv have a lower thermal conductivity than the ones made with

the corn cob residues. The composites are all excellent hygric regulators (MBV > 2 g/(m2.%RH)) except475

the composite made with PLA, which is only a good hydric regulator. For a same binder, the composites

made with corn cob residues have a better MBV than the composites made with hemp shiv. More, the

use of the molasses and the PLA decreases the MBV because these binders seem to seal the pores of

agro-resources.

Finally, the production of a two-layer thermal insulating panel would be ideal. Indeed, the composites480

made with hemp shiv can be used for distributed insulation because they have a low thermal conductivity.

Moreover, it may be even lower if the density of the composites is decreased. It is interesting to add

a second layer made of corn cob residues and extracts from agro-resources, one centimeter thick, for

its excellent ability to moderate the variations of the relative humidity in the surrounding air. Thus,

further research is still required to qualify the hygrothermal properties of a such multi layer system in485

real condition.
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