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Abstract: 
 KCa2Ta3-xNbxO10 samples were synthesized by solid-state reaction and evaluated 

on the hydroxylation of terephthalic acid under UVC irradiation. Computational 

simulations via DFT were carried out in order to study their structural and electronic 

properties. Theoretical results show good agreement with experimental data, regarding 

lattice parameters and band-gap energy values and  indicated that the photocatalytic 

performance for hydroxyl radicals production is directly related to the degree of 

octahedral distortions in these materials.  
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Introduction: 
 Dion-Jacobson-type (D-J) perovskites have drawn attention for their physical and 

chemical properties, particularly for their photocatalytic activity [1-4]. They have 

molecular formula Ax[Bm-1MnO3n+1] (where A is an alkaline ion; B an alkaline earth ion; 

M a transition metal and n indicates the number of [MO6] octahedra that form each 

*Manuscript
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perovskite-like slab) [5]. Some authors relate the photocatalytic activity of perovskites 

to the degree of octahedron distortion [6-8]. The main objective of this work was to 

study tantaloniobates (KCa2Ta3-xNbxO10 x = 0, 1 and 2) with D-J perovskite structure 

and to evaluate the effect of Ta:Nb ratio on their structural and photocatalytic properties. 

 

Experimental: 
 Materials were synthesized by solid-state reaction using carbonates or oxides as 

precursors under temperatures between 1100 and 1200 oC. Synthesized materials were 

characterized by X-ray diffraction (XRD, Bruker D8 Advance, CuKα1), Diffuse 

Reflectance Spectroscopy (DRS, Varian Cary 100 UV–Vis, 250-800 nm), Raman 

spectroscopy (Renishaw inVia Raman Microscope, 514 nm laser wavelength), SEM-

EDXS (Jeol JSM 7100 F microscope, operating at 10 kV for Energy Dispersive X-ray 

Spectroscopy analyses (EDXS) using an Oxford Instruments AZtec system). Formation 

of hydroxyl radicals was evaluated by the photohydroxylation of terephthalic acid (TA), 

used as probe at room temperature [9], under conditions previously described in the 

literature [10]. A blank test was performed with TA solution irradiation without 

photocatalyst. Formation of the luminescent 2-hydroxyterephthalic acid (HTA) was 

evaluated by spectrofluorimetry (Shimadzu RF-5301PC). Further details of syntheses 

and characterizations are displayed in the Supplementary Data (SD-01). 

 
Computational details: 
 Periodic DFT calculations were performed with CRYSTAL17 software [11] by 

using the global hybrid functional PBE0. KCa2Ta3O10 and KCa2Nb3O10 are layered 

perovskites with orthorhombic structures (C222 and Cmcm space groups respectively) 

and a slab constituted by the stacking of three corner-connected octahedra [Nb/TaO6]. In 

the absence of information about KCa2TaNb2O10 and KCa2Ta2NbO10 symmetry space 

group and for purpose of comparison, all materials were calculated in the KCa2Ta3O10 

(C222) space group. There are two distinct crystallographic positions for the transition 

metals, two equivalent octahedra (Oct1) constituting the slab edges while the other one 

(Oct2) forms the inner layer. For purposes of computational models depending on the 

chemical composition Nb and/or Ta were ascribed to either crystallographic positions 

without considering any mixed occupations. Band structure and density of states (DOS) 

calculations were plotted employing the same k-points set as the diagonalization of the 

Fock matrix for optimization process. Distortion index was based on bond lengths as 
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proposed by Baur [12] and the effective coordination number was calculated as the sum 

of the so-called “bond weight” of all polyhedron bonds. Further details of computational 

simulations are displayed in Supplementary Data (SD-02). 

 

Results and Discussion: 
 XRD patterns (Figure 1(1)) confirmed the formation of the targeted phases with 

small amount of KNbO3. Progressive substitution of tantalum by niobium atoms in the 

structure did not significantly modify the observed reflections except for small 

displacements of the peaks. KCa2Ta3O10 pattern was indexed by ICDD 01-089-8542, in 

agreement to literature [2]. No significant morphological changes were observed for the 

synthesized materials, as evidenced by SEM results (SD-03) and large surfaces assigned 

to (0 1 0) planes were observed [13]. Stoichiometry of the samples was confirmed by 

SEM-EDXS (Table 1). 

  

Figure 1 – XRD patterns (1) and Raman spectra (2) of KCa2Ta3O10 (a), KCa2Ta2NbO10 

(b), KCa2TaNb2O10 (c), KCa2Nb3O10 (d). 

 

Table 1 – Experimental composition and band-gap energy (Eg) of the synthesized 

materials compared to theoretical results. 

 
 Experimental Results Theoretical Results 

Samples Composition Eg (eV) a (Å) b (Å) c (Å) Eg (eV) 
KCa2Ta3O10 K0.8Ca2Ta2.9O10 4.2 3.9272 (+1.59 %)* 28.533 (-4.18 %)* 3.8856 (+0,87 %)* 4.29 
KCa2Ta2NbO10 K1.1Ca2Ta2.1Nb0.8O10 3.8 3.9708 28.539 3.8810 3.68 
KCa2TaNb2O10 K1.2Ca2TaNb1.9O10 3.6 3.9530 28.552 3.9161 3.46 
KCa2Nb3O10 K1.2Ca2Nb2.8O10 3.5 3.9824 28.480 3.9169 3.41 
* Percent deviations from the lattice parameters of ICDD  01-089-8542. 
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 Raman spectra (Figure 1(2)) evidenced the existence of two different types of 

octahedra, a highly distorted one (Oct1), which occupies the slab edge (bands around 

930 and 600 cm-1) and a slightly distorted one (Oct2) that occupies the lamella center 

(bands around 770 cm-1). These patterns are in good agreement with the literature [14]. 

The substitution of Ta by Nb caused a displacement of the bands around 770 and 600 

cm-1 to smaller wavenumbers. 

 Band-gap energies of the synthesized materials were calculated using the Kubelka-

Munk formalism [15] from DRS results (SD-04) and confirmed the downward trend as 

Ta is replaced by Nb (Table 1).  

 Photogeneration of hydroxyl radicals was evaluated by HTA formation, as function 

of reaction time (Figures 2(1) and 2(2)). All of the materials had some activity when 

compared to the blank test, while KCa2TaNb2O10 sample presented a much higher yield. 

The secondary phase (KNbO3) showed no activity for this reaction. Literature results [3] 

indicate that no •OH radicals were generated for 2D-2D g-C3N4/KCa2Nb3O10 nanosheet 

heterojunctions.  

 

 

Figure 2 – Fluorescence spectra of HTA formed in the reaction catalyzed by 

KCa2TaNb2O10 (1). Maximum intensity of HTA fluorescence produced by 

photohydroxylation of TA as a function of reaction time (2). 

 

 In an attempt to better understand the photocatalytic results, computational 

simulations were carried out focusing on structural and electronic aspects of the 

KCa2Ta3-xNbxO10 phases. Similar data were not found in the literature for these systems. 

Table 1 depicts the calculated cell parameters and the resulting deviations which were 

very low. Band structure (Figure SD-05) showed that all materials have indirect band-
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gap (X-Γ) and quite similar values were observed when comparing experimentally and 

theoretically calculated band-gap values (Table 1). These results, associated with XRD 

patterns for all samples, suggested that the previously assumed space group was valid.  

The calculated atomic positions were used to construct the structures shown in Figure 3. 

Regardless the atom that occupied the octahedral site of the layer edge (Oct1), this 

octahedron presented greater distortion than the one in the inner layer (Oct2). However, 

when Nb occupied this site, with Ta in the central position (KCa2TaNb2O10), the highest 

distortion index of these octahedra took place (Figure 3). This distortion was so 

pronounced that this Nb tended to 5-fold coordination, due to the high value of the axial 

Nb-O bond length, directed to the [TaO6] octahedron. A tendency to increase tilting 

between octahedra along a axis, culminating with a decrease of approximately 18o in the 

Nb-O-Nb bond, can also be observed for KCa2TaNb2O10 (Figure SD-06). 

 A marked shift of the Fermi level towards the conduction band (CB) was also 

observed in the band structure (Figure SD-04), similar to Burstein-Moss shift [16], 

which indicates the need to expand the electronic evaluation of theoretical calculations.  

According to DOS (Figure SD-05) the valence band (VB) was mainly constituted by 

oxygen atoms, whereas the conduction band had greater participation of metal atoms. A 

detail of VB and CB edges is presented in Figure 3.  
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Figure 3 - Structural representation of the KCa2Ta3-xNbxO10 phases, with octahedron 

distortion index, Nb/Ta effective coordination number and DOS results. 

 

 Due to its higher electronegativity, as usually assigned [8] 4d states of Nb lies 

lower than 5d state of Ta and thus participates preponderantly to the CB edge for all Nb-

containing structures, regardless of its proportion or its location. A deepening of 

theoretical calculations regarding electronic effects is already underway and will be 

released soon in the form of a new theoretical article. 

 Correlating the experimental data of hydroxyl radicals photogeneration with 

theoretical calculations results, it is evident that the increasing order of photocatalytic 

activity is exactly the same for the octahedron distortion index in this triple-layered D-J 

perovskite. The evidence that the photocatalytic activity of these materials may be 

related to both the distortion index of the octahedra and the DOS of the CB is in 

agreement with the literature [6-8]. 

 

Conclusion: 
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 Tantaloniobates with DJ perovskite structure were successfully synthesized by 

solid-state reaction. The [MO6] octahedron distortion index and the composition of the 

CB edge determined by theoretical calculations showed a great dependence on the type 

of element that occupies the M sites of the structure . Activity for hydroxyl radical 

photogeneration followed exactly the same increasing order of the octahedron distortion 

index, which is KCa2Ta2NbO10 < KCa2Ta3O10 < KCa2Nb3O10 < KCa2TaNb2O10. 
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