I. L. Bergin and F. A. Witzmann, Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps, Int. J. Biomed. Nanosci. Nanotechnol, vol.3, 2013.

X. Cheng, A. T. Kan, and M. B. Tomson, Naphthalene adsorption and desorption from aqueous C 60 fullerene, J. Chem. Eng. Data, vol.49, pp.675-683, 2004.

V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures, Chem. Rev, vol.115, pp.4744-4822, 2015.

G. Andrievsky, V. Klochkov, E. Karyakina, and N. Mchedlov-petrossyan, Studies of aqueous colloidal solutions of fullerene C 60 by electron microscopy, Chem. Phys. Lett, vol.300, pp.392-396, 1999.

Z. Chen, P. Westerhoff, and P. Herckes, Quantification of C 60 fullerene concentrations in water, Environ. Toxicol. Chem, 1852.

T. B. Henry, E. J. Petersen, and R. N. Compton, Aqueous fullerene aggregates (nC 60 ) generate minimal reactive oxygen species and are of low toxicity in fish: A revision of previous reports, Curr. Opin. Biotechnol, vol.22, pp.533-537, 2011.

Z. Markovic and V. Trajkovic, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C 60 ), Biomaterials, vol.29, pp.3561-3573, 2008.

T. M. Blickley and P. Mcclellan-green, Toxicity of aqueous flullerene in adult and larval fundulus heteroclitus, Environ. Toxicol. Chem, vol.27, 1964.

C. Della-torre, D. Maggioni, A. Ghilardi, M. Parolini, N. Santo et al., The interactions of fullerene C 60 and benzo(a)pyrene influence their bioavailability and toxicity to zebrafish embryos, Environ. Pollut, vol.241, pp.999-1008, 2018.

L. Canesi, C. Ciacci, D. Vallotto, G. Gallo, A. Marcomini et al., In vitro effects of suspensions of selected nanoparticles (C 60 fullerene, Aquat. Toxicol, vol.96, issue.2, pp.151-158, 2010.

A. Freixa, V. Acuña, M. Gutierrez, J. Sanchís, L. H. Santos et al., Fullerenes influence the toxicity of organic micro-contaminants to river biofilms, Front. Microbiol, vol.9, pp.1-12, 2018.

J. L. Yang, Y. F. Li, X. P. Guo, X. Liang, Y. F. Xu et al., The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement, Biofouling, vol.32, pp.763-777, 2016.

M. Lehto, T. Karilainen, T. Róg, O. Cramariuc, E. Vanhala et al., Co-Exposure with fullerene may strengthen health effects of organic industrial chemicals, PLoS ONE, vol.9, 2014.

J. Park, T. B. Henry, S. Ard, F. Menn, R. N. Compton et al., The association between nC( 60 ) and 17?-ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristics, Nanotoxicology, vol.5, pp.406-416, 2011.

K. T. Kim, M. H. Jang, J. Y. Kim, and S. D. Kim, Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos, Sci. Total Environ, vol.408, pp.5606-5612, 2010.

G. D. Nielsen, M. Roursgaard, K. A. Jensen, S. S. Poulsen, and S. T. Larsen, In vivo biology and toxicology of fullerenes and their derivatives, Basic Clin. Pharmacol. Toxicol, vol.103, pp.197-208, 2008.

S. Fiorito, A. Serafino, F. Andreola, and P. Bernier, Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, vol.44, pp.1100-1105, 2006.

G. Oberdörster, E. Oberdörster, and J. Oberdörster, Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect, vol.113, pp.823-839, 2005.

A. J. Kennedy, M. S. Hull, J. A. Steevens, K. M. Dontsova, M. A. Chappell et al., Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment, Environ. Toxicol. Chem, vol.27, pp.1932-1941, 2008.

A. Trpkovic, B. Todorovic-markovic, and V. Trajkovic, Toxicity of pristine versus functionalized fullerenes: Mechanisms of cell damage and the role of oxidative stress, Arch. Toxicol, vol.86, pp.1809-1827, 2012.

S. Zhu, E. Oberdörster, and M. L. Haasch, Toxicity of an engineered nanoparticle (fullerene, C 60 ) in two aquatic species, Daphnia and fathead minnow, Mar. Environ. Res, vol.62, 2006.

A. Baun, S. N. Sørensen, R. F. Rasmussen, N. B. Hartmann, and C. B. Koch, Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C 60, Aquat. Toxicol, vol.86, pp.379-387, 2008.

T. B. Henry, S. J. Wileman, H. Boran, and P. Sutton, Association of Hg 2+ with aqueous (C 60 )n aggregates facilitates increased bioavailability of Hg 2+ in zebrafish (Danio rerio), Environ. Sci. Technol, vol.47, pp.9997-10004, 2013.

I. Velzeboer, C. J. Kwadijk, and A. A. Koelmans, Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes, Environ. Sci. Technol, vol.48, pp.4869-4876, 2014.

J. Farkas, S. Bergum, E. W. Nilsen, A. J. Olsen, I. Salaberria et al., The impact of TiO 2 nanoparticles on uptake and toxicity of benzo(a)pyrene in the blue mussel (Mytilus edulis), Sci. Total Environ, vol.511, pp.469-476, 2015.

M. Holmstrup, A. M. Bindesbøl, G. J. Oostingh, A. Duschl, V. Scheil et al., Interactions between effects of environmental chemicals and natural stressors: A review, Sci. Total Environ, vol.408, pp.3746-3762, 2010.

L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana et al., Bivalve molluscs as a unique target group for nanoparticle toxicity, Mar. Environ. Res, vol.76, pp.16-21, 2012.

Y. De-lafontaine, F. Gagné, C. Blaise, G. Costan, P. Gagnon et al., Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada), Aquat. Toxicol, vol.50, pp.51-71, 2000.

M. Hu, D. Lin, Y. Shang, Y. Hu, W. Lu et al., CO 2 -induced pH reduction increases physiological toxicity of nano-TiO 2 in the mussel Mytilus coruscus, Sci. Rep, vol.7, pp.1-11, 2017.

T. Gomes, C. G. Pereira, C. Cardoso, and M. J. Bebianno, Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag, Aquat. Toxicol, pp.136-137, 2013.

A. D'agata, S. Fasulo, L. J. Dallas, A. S. Fisher, M. Maisano et al., Enhanced toxicity of "bulk" titanium dioxide compared to "fresh" and "aged" nano-TiO 2 in marine mussels (Mytilus galloprovincialis), Nanotoxicology, vol.8, pp.549-558, 2014.

L. J. Dallas, T. P. Bean, A. Turner, B. P. Lyons, and A. N. Jha, Oxidative DNA damage may not mediate Ni-induced genotoxicity in marine mussels: Assessment of genotoxic biomarkers and transcriptional responses of key stress genes, Mutat. Res, vol.754, pp.22-31, 2013.

M. Banni, S. Sforzini, V. M. Arlt, A. Barranger, L. J. Dallas et al., Assessing the impact of benzo[a]pyrene on marine mussels: Application of a novel targeted low density microarray complementing classical biomarker responses, PLoS ONE, vol.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614342

J. Sanchís, Y. Aminot, E. Abad, A. N. Jha, J. W. Readman et al., Transformation of C 60 fullerene aggregates suspended and weathered under realistic environmental conditions, Carbon, vol.128, pp.54-62, 2018.

J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat. Methods, vol.6, pp.359-362, 2009.

J. Rappsilber, Y. Ishihama, and M. Mann, Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics, Anal. Chem, vol.75, pp.663-670, 2003.

G. L. Sequiera, N. Sareen, V. Sharma, A. Surendran, E. Abu-el-rub et al., High throughput screening reveals no significant changes in protein synthesis, processing, and degradation machinery during passaging of mesenchymal stem cells. Can, J. Physiol. Pharmacol, pp.1-8, 2018.

, R: A Language and Environment for Statistical Computing, version 3.5.0; R Foundation for Statistical Computing, 2013.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: Open source software for rapid proteomics tools development, Bioinformatics, vol.24, pp.2534-2536, 2008.

T. L. Pedersen and . Msgfplus, An interface between R and MS-GF+, 2017.

S. Kim and P. A. Pevzner, MS-GF+ makes progress towards a universal database search tool for proteomics, Nat. Commun, vol.5, pp.1-10, 2014.

Q. Ding, J. Zhang, and . Seqrflp, Simulation and visualization of restriction enzyme cutting pattern from DNA sequences, 2012.

L. I. Levitsky, M. V. Ivanov, A. A. Lobas, and M. V. Gorshkov, Unbiased false discovery rate estimation for shotgun proteomics based on the target-decoy approach, J. Proteome Res, vol.16, pp.393-397, 2017.

E. W. Deutsch, A. Csordas, Z. Sun, A. Jarnuczak, Y. Perez-riverol et al., The ProteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition, Nucleic Acids Res, vol.45, pp.1100-1106, 2017.

Y. Perez-riverol, A. Csordas, J. Bai, M. Bernal-llinares, S. Hewapathirana et al., The PRIDE database and related tools and resources in 2019: Improving support for quantification data, Nucleic Acids Res, vol.47, 2019.

X. Fu, S. A. Gharib, P. S. Green, M. L. Aitken, D. A. Frazer et al., Spectral index for assessment of differential protein expression in shotgun proteomics, J. Proteome Res, vol.7, pp.845-854, 2008.

A. Pursiheimo, A. P. Vehmas, S. Afzal, T. Suomi, T. Chand et al., Optimization of statistical methods impact on quantitative proteomics data, J. Proteome Res, vol.14, pp.4118-4126, 2015.

Y. V. Karpievitch, A. R. Dabney, and R. D. Smith, Normalization and missing value imputation for label-free LC-MS analysis, BMC Bioinform, vol.13, 2012.

T. Välikangas, T. Suomi, and L. L. Elo, A systematic evaluation of normalization methods in quantitative label-free proteomics, Brief. Bioinform, vol.19, pp.1-11, 2018.

R. Wei, J. Wang, M. Su, E. Jia, S. Chen et al., Missing value imputation approach for mass spectrometry-based metabolomics data, Sci. Rep, vol.8, p.663, 2018.

, Nanomaterials, vol.9, pp.987-1011, 2019.

C. Lazar, L. Gatto, M. Ferro, C. Bruley, and T. Burger, Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies, J. Proteome Res, vol.15, pp.1116-1125, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02083850

J. Gregori, A. Sanchez, and J. Villanueva, msmsEDA and msmsTests: R/Bioconductor packages for spectral count label-free proteomics data analysis, 2016.

G. Yu, L. Wang, Y. Han, and Q. He, clusterProfiler: An R Package for comparing biological themes among gene clusters, Omics J. Integr. Biol, vol.16, pp.284-287, 2012.

M. Kanehisa, Y. Sato, K. Morishima, and G. Blastkoala, KEGG Tools for Functional Characterization of Genome and Metagenome Sequences, J. Mol. Biol, vol.428, pp.726-731, 2016.

J. Oliveros and . Venny, An interactive tool for comparing lists with Venn's diagrams, 2007.

H. J. Helbock, K. B. Beckman, M. K. Shigenaga, P. B. Walter, A. A. Woodall et al., DNA oxidation matters: The HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine, Proc. Natl. Acad. Sci, vol.95, pp.288-293, 1998.

F. Akcha, T. Burgeot, H. Budzinski, A. Pfohl-leszkowicz, and J. Narbonne, Induction and elimination of bulky benzo[a]pyrene-related DNA adducts and 8-oxodGuo in mussels Mytilus galloprovincialis exposed in vivo to B[a]P-contaminated feed, Mar. Ecol. Prog. Ser, vol.205, pp.195-206, 2000.

A. Barranger, C. Heude-berthelin, J. Rouxel, B. Adeline, A. Benabdelmouna et al., Parental exposure to the herbicide diuron results in oxidative DNA damage to germinal cells of the Pacific oyster Crassostrea gigas, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.180, pp.23-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01614286

D. H. Phillips and V. M. Arlt, 32P-Postlabeling analysis of DNA adducts, Molecular Toxicology Protocols

P. Keohavong, S. G. Grant, and . Eds, , pp.127-138, 2014.

L. Reed, I. Mrizova, F. Barta, R. Indra, M. Moserova et al., Cytochrome b 5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: Studies in hepatic cytochrome b 5 /P450 reductase null (HBRN) mice, Arch. Toxicol, vol.92, pp.1625-1638, 2018.

J. E. Kucab, H. Van-steeg, M. Luijten, H. H. Schmeiser, P. A. White et al., TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts, Mutat. Res. Fundam. Mol. Mech. Mutagen, vol.773, pp.48-62, 2015.

, R: A Language and Environment for Statistical Computing, version 3.6.0; R Foundation for Statistical Computing, 2019.

R. David, T. Ebbels, and N. Gooderham, Synergistic and antagonistic mutation responses of human MCL-5 cells to mixtures of Benzo[a]pyrene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine: Dose-related variation in the joint effects of common dietary carcinogens, Environ. Health Perspect, vol.124, pp.88-96, 2016.

S. P. Katsifis, P. L. Kinney, S. Hosselet, F. J. Burns, and N. T. Christie, Interaction of nickel with mutagens in the induction of sister chromatid exchanges in human lymphocytes, Mutat. Res. Mutagen. Relat. Subj, vol.359, pp.7-15, 1996.

R. B. Schlesinger, J. T. Zelikoff, L. C. Chen, and P. L. Kinney, Assessment of toxicologic interactions resulting from acute inhalation exposure to sulfuric acid and ozone mixtures, Toxicol. Appl. Pharmacol, vol.115, pp.183-190, 1992.

P. J. Fitzpatrick, T. O. Krag, P. Højrup, and D. Sheehan, Characterization of a glutathione S-transferase and a related glutathione-binding protein from gill of the blue mussel, Mytilus edulis, Biochem. J, vol.305, pp.145-150, 2015.

Y. Di, Y. Aminot, D. C. Schroeder, J. W. Readman, and A. N. Jha, Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(?)pyrene and C 60 fullerenes, either alone or in combination, Mutagenesis, vol.32, pp.77-90, 2016.

T. Gomes, C. G. Pereira, ?. Cardoso, V. S. Sousa, M. R. Teixeira et al., Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis, Mar. Environ. Res, vol.101, pp.208-214, 2014.

S. Tedesco, H. Doyle, G. Redmond, and D. Sheehan, Gold nanoparticles and oxidative stress in Mytilus edulis, Mar. Environ. Res, vol.66, pp.131-133, 2008.

A. Kahru and H. C. Dubourguier, From ecotoxicology to nanoecotoxicology, Toxicology, vol.269, pp.105-119, 2010.

A. Isakovic, Z. Markovic, B. Todorovic-marcovic, N. Nikolic, S. Vranjes-djuric et al., Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene, Toxicol. Sci, vol.91, pp.173-183, 2006.

C. Du, B. Zhang, Y. He, C. Hu, Q. X. Ng et al., Biological effect of aqueous C 60 aggregates on Scenedesmus obliquus revealed by transcriptomics and non-targeted metabolomics, J. Hazard. Mater, vol.324, pp.221-229, 2017.

G. P. Kuznetsova, O. V. Larina, N. A. Petushkova, Y. S. Kisrieva, N. F. Samenkova et al., Effects of fullerene C 60 on proteomic profile of danio rerio fish embryos, Bull. Exp. Biol. Med, vol.156, pp.694-698, 2014.

N. Levi, R. R. Hantgan, M. O. Lively, D. L. Carroll, and G. L. Prasad, C 60 -Fullerenes: Detection of intracellular photoluminescence and lack of cytotoxic effects, J. Nanobiotechnol, vol.4, pp.1-11, 2006.

J. L. Ferreira, M. N. Lonné, T. A. França, N. R. Maximilla, T. H. Lugokenski et al., Co-exposure of the organic nanomaterial fullerene C 60 with benzo[a]pyrene in Danio rerio (zebrafish) hepatocytes: Evidence of toxicological interactions, Aquat. Toxicol, vol.147, pp.76-83, 2014.

Q. Song, H. Chen, Y. Li, H. Zhou, Q. Han et al., Toxicological effects of benzo(a)pyrene, DDT and their mixture on the green mussel Perna viridis revealed by proteomic and metabolomic approaches, Chemosphere, vol.144, pp.214-224, 2016.

V. L. Maria, T. Gomes, L. Barreira, and M. J. Bebianno, Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis, Aquat. Toxicol, pp.284-295, 2013.

E. N. Linard, O. G. Apul, T. Karanfil, . Van-den, P. Hurk et al., Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration, Environ. Sci. Technol, vol.51, pp.9288-9296, 2017.

G. Santín, E. Eljarrat, and D. Barceló, Bioavailability of classical and novel flame retardants: Effect of fullerene presence, Sci. Total Environ, vol.565, pp.299-305, 2016.

J. Sanchís, M. Olmos, P. Vincent, M. Farré, and D. Barceló, New Insights on the Influence of Organic Co-Contaminants on the Aquatic Toxicology of Carbon Nanomaterials, Environ. Sci. Technol, vol.50, pp.961-969, 2016.

Y. Su, X. Yan, Y. Pu, F. Xiao, D. Wang et al., Risks of single-walled carbon nanotubes acting as contaminants-carriers: Potential release of phenanthrene in Japanese medaka

, Environ. Sci. Technol, vol.47, pp.4704-4710, 2013.

C. Della-torre, M. Parolini, L. Del-giacco, A. Ghilardi, M. Ascagni et al., Adsorption of B(?)P on carbon nanopowder affects accumulation and toxicity in zebrafish (Danio rerio) embryos, Environ. Sci. Nano, 2017.

T. Hüffer, M. Kah, T. Hofmann, and T. C. Schmidt, How redox conditions and irradiation affect sorption of PAHs by dispersed fullerenes (nC 60 ), Environ. Sci. Technol, vol.47, pp.6935-6942, 2013.

X. Xia, X. Chen, X. Zhao, H. Chen, and M. Shen, Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment, Environ. Sci. Technol, vol.46, pp.12467-12475, 2012.

S. N. Al-subiai, V. M. Arlt, P. E. Frickers, J. W. Readman, B. Stolpe et al., Merging nano-genotoxicology with eco-genotoxicology: An integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C 60 fullerenes and fluoranthene in marine mussels, Mytilus sp, Mutat. Res. Genet. Toxicol. Environ. Mutagen, vol.745, pp.92-103, 2012.

J. Sanchís, M. Llorca, M. Olmos, G. F. Schirinzi, C. Bosch-orea et al., Metabolic responses of Mytilus galloprovincialis to fullerenes in mesocosm exposure experiments, Environ. Sci. Technol, vol.52, pp.1002-1013, 2018.

W. M. Baird, L. A. Hooven, and B. Mahadevan, Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action, Environ. Mol. Mutagen, vol.45, pp.106-114, 2005.

H. J. Johnston, G. R. Hutchison, F. M. Christensen, K. Aschberger, and V. Stone, The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity, Toxicol. Sci, vol.114, pp.162-182, 2009.

A. Rondags, W. Y. Yuen, M. F. Jonkman, and B. Horváth, Fullerene C 60 with cytoprotective and cytotoxic potential: Prospects as a novel treatment agent in Dermatology?, Exp. Dermatol, vol.26, pp.220-224, 2017.

J. P. Groten, V. J. Feron, and J. Suhnel, Toxicology of simple and complex mixtures, Trends Pharmacol. Sci, vol.22, pp.316-322, 2001.

M. Slattery, S. Ankisetty, J. Corrales, K. E. Marsh-hunkin, D. J. Gochfeld et al., Marine proteomics: A critical assessment of an emerging technology, J. Nat. Prod, vol.75, pp.1833-1837, 2012.

A. Campos, G. Danielsson, A. P. Farinha, J. Kuruvilla, P. Warholm et al., Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm, J. Proteomics, vol.137, pp.97-106, 2016.

P. Espinosa, E. Koller, A. Allam, and B. , Proteomic characterization of mucosal secretions in the eastern oyster, Crassostrea virginica, J. Proteomics, vol.132, pp.63-76, 2016.

A. Campos, I. Apraiz, R. R. Da-fonseca, and S. Cristobal, Shotgun analysis of the marine mussel Mytilus edulis hemolymph proteome and mapping the innate immunity elements, Proteomics, vol.15, pp.4021-4029, 2015.

P. A. Fields, M. J. Zuzow, and L. Tomanek, Proteomic responses of blue mussel (Mytilus) congeners to temperature acclimation, J. Exp. Biol, vol.215, pp.1106-1116, 2012.

L. Franco-martínez, S. Martínez-subiela, D. Escribano, S. Schlosser, K. Nöbauer et al., Alterations in haemolymph proteome of Mytilus galloprovincialis mussel after an induced injury, Fish. Shellfish Immunol, vol.75, pp.41-47, 2018.

M. Murgarella, D. Puiu, B. Novoa, A. Figueras, D. Posada et al., A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis, PLoS ONE, vol.11, 2016.

C. T. De-rosa, H. A. El-masri, H. Pohl, W. Cibulas, and M. M. Mumtaz, Implications of chemical mixtures in public health practice, J. Toxicol. Environ. Health Part B, vol.7, pp.339-350, 2004.

L. Rey-salgueiro, E. Martínez-carballo, A. Cid, and J. Simal-gándara, Determination of kinetic bioconcentration in mussels after short term exposure to polycyclic aromatic hydrocarbons, vol.3, p.231, 2017.

J. Xu, D. Corry, D. Patton, J. Liu, and S. Jackson, Actin plaque formation as a transitional membrane microstructure which plays a crucial role in cell-cell reconnections of rat hepatic cells after isolation, J. Interdiscip. Histopathol, 2012.

P. Anilkumar, F. Lu, L. ;. Cao, P. Luo, J. Liu et al., Fullerenes for applications in biology and medicine, Curr. Med. Chem, vol.18, pp.2045-2059, 2011.

R. Bakry, R. M. Vallant, M. Najam-ul-haq, M. Rainer, Z. Szabo et al., Medicinal applications of fullerenes, Int. J. Nanomed, vol.2, pp.639-649, 2007.

P. D. Sullivan, Free radicals of benzo(a)pyrene and derivatives, Environ. Health Perspect, vol.64, pp.283-295, 1985.

T. Souza, D. Jennen, J. Van-delft, M. Van-herwijnen, S. Kyrtoupolos et al., New insights into BaP-induced toxicity: Role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis, Arch. Toxicol, vol.90, pp.1449-1458, 2016.

B. Zhang, W. Bian, A. Pal, and Y. He, Macrophage apoptosis induced by aqueous C 60 aggregates changing the mitochondrial membrane potential, Environ. Toxicol. Pharmacol, vol.39, pp.237-246, 2015.

L. Y. Yang, J. L. Gao, T. Gao, P. Dong, L. Ma et al., Toxicity of polyhydroxylated fullerene to mitochondria, J. Hazard. Mater, vol.301, pp.119-126, 2016.

P. M. Costa, M. Bourgognon, J. T. Wang, and K. T. Al-jamal, Functionalized carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery, J. Control. Release, vol.241, pp.200-219, 2016.

L. Canesi, R. Fabbri, G. Gallo, D. Vallotto, A. Marcomini et al., Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO, vol.2

, Aquat. Toxicol, vol.100, pp.168-177, 2010.

J. Verghese, J. Abrams, Y. Wang, and K. A. Morano, Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiol. Mol. Biol. Rev, vol.76, pp.115-158, 2012.

M. T. Ryan and N. Pfanner, Hsp70 proteins in protein translocation, Adv. Protein Chem, vol.59, pp.223-242, 2001.

W. B. Pratt and D. O. Toft, Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery, Exp. Biol. Med, vol.228, pp.111-133, 2003.

J. Li, Y. Zhang, F. Mao, Y. Tong, Y. Liu et al., Characterization and identification of differentially expressed genes involved in thermal adaptation of the Hong Kong Oyster Crassostrea hongkongensis by digital gene expression profiling. Front, vol.4, pp.1-12, 2017.

A. Negri, C. Oliveri, S. Sforzini, F. Mignione, A. Viarengo et al., Transcriptional response of the Mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper, PLoS ONE, vol.8, 2013.

T. Gomes, J. P. Pinheiro, I. Cancio, C. G. Pereira, C. Cardoso et al., Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis, Environ. Sci. Technol, vol.45, pp.9356-9362, 2011.

P. Ghezzi and V. Bonetto, Redox proteomics: Identification of oxidatively modified proteins, Proteomics, vol.3, pp.1145-1153, 2003.

S. Chen, M. Qu, J. Ding, Y. Zhang, Y. Wang et al., BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus, Chemosphere, vol.205, pp.286-296, 2018.

J. P. Kamat, T. P. Devasagayam, K. I. Priyadarsini, H. Mohan, and J. P. Mittal, Oxidative damage induced by the fullerene C 60 on photosensitization in rat liver microsomes, Chem. Biol. Interact, vol.114, pp.145-159, 1998.

J. P. Kamat, T. P. Devasagayam, K. I. Priyadarsini, and H. Mohan, Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications, Toxicology, vol.155, pp.55-61, 2000.

X. Xu, R. Li, M. Ma, X. Wang, Y. Wang et al., Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C 60 : Experiment and modeling, Soft Matter, vol.8, pp.2915-2923, 2012.

T. Smital, R. Sauerborn, and B. K. Hackenberger, Inducibility of the P-glycoprotein transport activity in the marine mussel Mytilus galloprovincialis and the freshwater mussel Dreissena polymorpha, Aquat. Toxicol, vol.65, pp.443-465, 2003.

X. Xu, X. Wang, Y. Li, Y. Wang, and L. Yang, A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA, Nucleic Acids Res, vol.40, pp.7622-7632, 2012.

H. An and B. Jin, DNA exposure to buckminsterfullerene (C 60 ): Toward DNA stability, reactivity, and replication, Environ. Sci. Technol, vol.45, pp.6608-6616, 2011.

E. J. Park, J. Roh, Y. Kim, and K. Park, Induction of inflammatory responses by carbon fullerene (C 60 ) in cultured RAW264.7 cells and in intraperitoneally injected mice, Toxicol. Res, vol.26, pp.267-273, 2013.