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ABSTRACT Nowadays, chaos-based image encryption is recognized as an effective choice in secure
communications. This paper proposes a novel approach, which uses bit-pair level XOR, add, and rotation
from top to bottom and enhances diffusion with pixel level XOR operator from the lower right corner to the
upper left corner. Due to the bit-pair level encryption, the proposed scheme has ensured great security and
high encryption speed. The chaotic series employed for encryption are obtained from the modified pulse-
coupled spiking neurons circuit map. It is suitable for use encryption because of its abundant parameters:
wide chaotic range, ergodicity, complexity, and high sensitivity. Furthermore, the results show the superiority
of this scheme compared to the other four methods in terms of robustness to differential attack.

INDEX TERMS Chaos, image encryption, bit-pair level process, security.

I. INTRODUCTION
With the rapid development ofmultimedia technology and the
widespread popularity of personal digital device and internet,
the protection of images from unauthorized parties is a core
issue. Indeed, compared to text data, images have some spe-
cial properties such as bulk data capacity, high redundancy
and strong correlation among adjacent pixels, which make
conventional text encryption method unadapted. Many works
have focused on appropriate image cryptosystems with a
wide variety of strategies, such as Fourier transform [1], [2],
wavelet transform [3], compressive sensing [4], Arnold trans-
form [5], [6], SCAN [7] and chaos [8], [9]. Among these
strategies, chaos-based image encryption has regarded as
one of efficient and excellent encryption method due to the
properties of chaotic systems, including high sensitivity to
their initial values and control parameters, state ergodicity,
pseudo randomness of evolution, structure complexity [11].

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniello Castiglione.

In chaos-based image encryptions, chaotic systems are
generally used to generate key streams. Once chaotic sys-
tems and their initial conditions which are known as secret
keys in encryption systems are decided, pseudo-random key
streams are given. And encrypted images are produced by
combining these key streams with plaintext images. Besides,
a slight change of initial values or control parameters leads to
significantly different outputs of chaotic systems and cause
totally different key streams, which guarantees the security of
cryptosystem. By leveraging the properties, like state ergod-
icity and structure complexity, chaotic systems further bring
a long-term unpredictable encryption.

In 1989, chaos theory was first introduced to cryp-
tosystem by British mathematician Matthews using logistic
map [12]. This work demonstrates the feasibility of chaos-
based encryption. Nowadays, chaos further draws consider-
able attention of researchers in image encryption [8]–[10],
[13]–[30], due to the increasing security requirement of
image data and properties of chaotic system. In most of these
image encryption algorithms, confusion-diffusion structure
is chosen as a general structure in designing image
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encryption scheme. This structure is in good accord with
the confusion and diffusion properties of cryptography men-
tioned by Shannon in [31]. In confusion-diffusion struc-
ture, confusion means the ciphertext should be noise-like,
while diffusion brings a slight change in plaintext carries
a great change in ciphertext. These two properties guaran-
tee the effectiveness and security of chaos-based cryptogra-
phy. Confusion-diffusion structure was suggested by Fridrich
in [14] that encrypted images by permutating pixel position
and diffusing pixels value with chaos for the first time. Com-
pared with permutating pixels, the permutation of bits of
pixels provides higher security, though the computation cost
may be increased. Therefore, the tradeoff between security
and speed needs to be taken into account. In [27], Wang et al.
chose pixels as permutation units. The pixels are confused
via row and column permutations. After such reorganization,
permuted pixels are XORed with the secret keys which corre-
sponds to Logistic map, and then the chaotic iterative value is
refreshed according to the encrypted pixels. Thus, the confu-
sion and diffusion of the pixels are done simultaneously to get
a high security. In [28], Zhou et al. proposed a chaotic system
by combining existing chaotic maps and applied it in image
encryption. The encryption scheme has a 4-round-encryption
structure. Each encryption round is constituted of 5 steps, that
are: random pixel insertion, row separation, 1D substitution,
row combination and image rotation. Due to the random pixel
insertion, the images are encrypted randomly, non-repeatedly
and unpredictably. Compared to [27] and [28], Zhu et al. [29]
further consider the 8 bit encoding of grayscale pixels , and
permute the 4 most significant bits individually, whereas the
4 least significant bits are relocated as a whole to save time.
The permutation is achieved based on the Arnold cat map
the parameters of which are determined by Logistic map.
In the diffusion phase, each pixel value is altered sequen-
tially by the chaotic iterative value and the output of the
Logistic map. This image encryption scheme reaches a high
encryption speed, and needs at least 3 encryption rounds to
resist differential attack. In [30], Xu et al. also works on
pixel bit planes, considering the four higher bit planes as a
group and the four lower bit planes as another group. In the a
first time, two binary sequences are transformed from these
two groups, and diffuse each other with chaos, cyclic shifts
and the XOR operation. By next, elements of both binary
sequences are swapped by the order from the piecewise linear
chaotic maps. These two encryption steps perform secure via
only one round.

Since typical chaotic systems have been studied thor-
oughly, it is securer to use a new chaotic system in encryption.
The chaotic system used in this paper is obtained from amod-
ified pulsed-coupled spiking neurons circuit (MPSNC) [32].
It is controlled by 6 independent sensitive parameters which
can provide more rich keys selections and bring a larger key
space. Furthermore, it also exhibits a wider range of chaotic
iteration and parameter settings, and outputs a more complex
chaotic series. All of these advantages support the suitability
of MPSNC map in image encryption.

In this paper, a chaos-based symmetric image encryption
using bit-pair level process is proposed. Differently to bit
level and pixel level encryption, we propose to use bit-pair
level process reaches a high security with fast encryption
speed to reach a tradeoff. More clearly, our chaos based
cryptosystem is designed in two steps. Firstly, each pixel is
divided into 4 bit-pairs, and thewhole imagewith size ofm×n
is transformed into a bit-pair level matrix with size of 2m×2n.
Every 16 adjacent pixels form a bit-pair block with size of
8× 8. One block is XORed with the former block, and added
with remainder after modular calculation of sum of elements
in the former one. Then the block is further divided into
4 concentric regions from inside to outside. These 4 regions
are rotated for several bit-pair controlled by the block itself
and MPSNC map. Performing a multi-functionality, such a
combined operation spreads the influence of former block
and confuses the bit-pairs. In the second step, a XOR operator
is designed using the MPSNC map and acts on the pixels
to diffuse pixels from lower the right corner to the upper
left corner. Thus, the weakness of the first step is overcome,
and diffusion property is highly enhanced. In summary, these
two steps guarantee the cryptosystem to meet the classic
confusion and diffusion Shannon requirements, effectively
and efficiently.

The rest of this paper is organized as follows.
Section 2 introduces the MPSNC map. Section 3 describes
our chaos based cryptosystem while Section 4 analyzes its
performance based on the experiment results. Section 5 con-
cludes the paper.

II. THE MPSNC MAP
A. INTRODUCTION OF MPSNC MAP
In the proposed algorithm, the MPSNC map is selected to
generate the needed key streams and is defined as (1)-(3).

x(i+ 1)

= F(x(i)) =

{
F1(x(i)) mod p for odd i
F2(x(i)) mod p for even i

(1)

F1(x(i))

=



−k12sin(2πrx(i))+ k11(xm(i)− 1
4 )+ 1

s
+ x(i),

0 ≤ xm(i) <
1
2

−k12sin(2πrx(i))− k11(xm(i)− 1
4 )+ 1

s
+ x(i),

1
2
≤ xm(i) < 1

(2)

F2(x(i))

=



−k22sin(2πrx(i))+ k21(xm(i)− 1
4 )+ 1

s
+ x(i),

0 ≤ xm(i) <
1
2

−k22sin(2πrx(i))− k21(xm(i)− 1
4 )+ 1

s
+ x(i),

1
2
≤ xm(i) < 1

(3)
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where p is the denominate of fraction form of r in the lowest
term, x ∈ [0, p), xm(i) = x(i)mod 1, and |k11|/4+ |k12| < 1,
|k21|/4+ |k22| < 1.

B. PERFORMANCE EVALUATION OF MPSNC MAP
According to the relationship between parameter and dynam-
ics stated in [32], the chaotic behavior of MPSNC map can
be established with suitable parameter settings. In MPSNC
map F , there are 6 independent parameters, known as k11,
k12, k21, k22, s and r . In this section, the superiority of using
map F in image encryption is analyzed considering bifurca-
tion diagram, Lyapunov exponents, permutation entropy and
sensitivity, with fixed parameters k11 = 1.5, k21 = 2.2,
k22 = 0.2, r = 0.2 and s = 0.3. Notice that even though
it is possible to access a rich and flexible selections of key
space, in this section, only the parameter k12 and the initial
value x(1) are chosen as keys so as to introduce the proposed
algorithm concisely and clearly.

FIGURE 1. Chaotic behavior of MPSNC and logistical maps.
(a) Bifurcation diagram of the MPSNC map for k12 ∈ [0, 0.615);
(b) Lyapunov exponent of the MPSNC map for k12 ∈ [0, 0.615);
(c) Bifurcation diagram of the Logistical map for r ∈ [0, 4); (d) Lyapunov
exponent of the logistical map for r ∈ [0, 4).

1) BIFURCATION DIAGRAM AND LYAPUNOV EXPONENTS
As shown in Figs.1(a) and (b), MPSNC map F is chaotic and
ergodic within the whole value range of x(n), [0, 5), in the
entire domain of k12, [0, 0.625), with a uniform distribution
and no periodic windows.Meanwhile the bifurcation diagram
and Lyapunov exponent spectrum of Logistical map which is
the most commonly used chaotic map in image encryption,
defined as (4), is exhibited in Figs.1(c) and (d). Although
the domain of parameter in the typical Logistical map is
wider, its chaotic domain, r ∈ [3.57, 4), is narrower. Besides,
the ergodic range of Logistical map is only covered by [0, 1).
To conclude, the MPSNC chaotic map provides a larger key
space than Logistical map.

x(i+ 1) = f (x(i)) = rx(i)(1− x(i)) (4)

2) PERMUTATION ENTROPY
The complexity of chaotic series can be measured by permu-
tation entropy (PE) [33]. For normalized PE, the more closed

FIGURE 2. The MPSNC map gains higher PEs than the logistical map.
(a) PEs of MPSNC map for x(1) = 3.5 and k12 ∈ [0, 0.615); (b) PEs of
MPSNC map for k12 = 0.6 and x(1) ∈ [0, 5); (c) PEs of logistical map for
x(1) = 0.3 and r ∈ [0, 4); (d) PEs of logistical map for r = 3.8 and
x(1) ∈ [0, 1).

to 1, the more unpredictable chaotic series are generated.
In Fig. 2 provides PE of both MPSNC chaotic and Logistical
maps with different parameter and initial values. In each
calculation, the embedding dimension n = 6, time lag τ = 1,
and series with 5000 iterative values were used. As it can be
seen, compared with Logistical map, MPSNC chaotic map
PE is much closer to 1. This means that more complex and
unpredictable series can be generated than with Logistic map.

3) SENSITIVITY
Chaotic map used in image encryption should be sen-
sitive to the initial value and the control parameters.
In Figs. 3(a and (b) illustrate the sensitivity of MPSNC
chaotic map to x(1) and k12 , respectively. For the origi-
nal orbit, the parameter k12 = 0.6, and the initial value
x(1) = 4.8. In Fig. 3(a), the orbit for comparison has tiny
change on initial point x(1) with 10−15 bigger, while the two
orbits in Fig. 3(b) have the same starting point but with differ-
ent k12 values. Visually, both the orbits in Figs. 3(a) and (b)
are visually distinguishable after nearly 20 iterations. Regard-
ing the Logistical map, a change of 10−15 of the initial value
of x(1) and of the parameter r causes a different iterative orbit
after nearly 80 iterations, as it can be seen in Figs. 3(c) and (d).
It is clear that the MPSNC chaotic map is more sensitive to
the variation of x(1) and k12.

III. NOVEL IMAGE ENCRYPTION ALGORITHM
The proposed image encryption algorithm includes two main
steps. As we will see in the sequel in more details, each pixel
is first divided into 4 bit-pairs. An image of size m×n is thus
transformed into a 2m × 2n matrix. In accordance with the
order horizontally from the upper left to the lower right, each
8 × 8 bit-pair block is encrypted by applying a set of XOR,
addition and rotation operations. In the next step, another
XOR operation is carried among pixels, encrypted pixels and
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FIGURE 3. The MPSNC is more sensitivity to the initial value and the
control parameters than the Logistical maps. (a) Sensitivity of MPSNC to
x(1); (b) Sensitivity of MPSNC to k12; (c) Sensitivity of the Logistical map
to x(1); (d) Sensitivity of the Logistical map to r .

TABLE 1. Percentage of pixel information carried by different bits.

a pseudo random sequence, from the lower right to the upper
left vertically, to enhance the diffusion property.

A. BIT-PAIR LEVEL ROTATION
The gray value of one pixel of a grayscale image can be
represented by (5).

Pi,j = P8i,j × 27 + P7i,j × 26 + P6i,j × 25 + P5i,j × 24

+P4i,j × 23 + P3i,j × 22 + P2i,j × 21 + P1i,j × 20 (5)

where Psi,j is the value of the s-th bit of the pixel located at the
position (i, j).

Each of a pixel has different influence on pixel [29]. In par-
ticular, the percentage of pixel information carried by the s-
th bit can be calculated with (6), and the results are recorded
in Table 1.

I (s) =
2s−1∑8
s=1 2s−1

(6)

As it can be seen from Table 1, the higher 4 bits carry
nearly 94.1176% of the image information. This means that
the higher the bit, the more it contains information. In order
to avoid it in the cipher image, our strategy consists in
transforming each pixel into a bit-pair array with size of 2×2
as illustrated in Fig. 4.

FIGURE 4. Transformation of pixel to bit-pair array.

FIGURE 5. Illustration of the bit-pair level rotation parameterized with
(tr1, tr2, tr3, tr4) = (2, 8, 4,19).

In Fig. 4, Ps,ti,j = Psi,j × 21 + Pti,j × 20, and Ps,ti,j is a
combination of lower bit and higher bit. This strategy can
balance the pixel information carried by bits. Furthermore,
the bit-pair level rotation is carried on the 8×8 bit-pair block
constructed by 16 bit-pair array with size of 2× 2 to confuse
these 64 bit-pairs, as shown in Fig. 5. So the original image
with size of m × n is changed into a matrix with size of
2m × 2n. And the bit-pair block composed of 64 bit-pairs is
divided into 4 concentric regions from inside to outside. From
the innermost region to the outermost region, every region
is rotated in turn, depending on the control instructions tr1,
tr2, tr3 and tr4 generated by (7)-(8). In addition, to enhance
the security, the rotation direction is linked with the number
of ‘‘1’’ of bit-pair in the corresponding region. If the parity
is odd, the corresponding region is rotated counterclock-
wise, or clockwise rotation on the contrary.

xr (i+ 1)
= F(xr (i)) (7)

tr1(j) = floor[xr (j+ 2000)× 1010] mod 4
tr2(j) = floor[xr (j+ 2000+ Lr )× 1010] mod 12
tr3(j) = floor[xr (j+ 2000+ 2× Lr )× 1010] mod 20
tr4(j) = floor[xr (j+ 2000+ 3× Lr )× 1010] mod 28

(8)

where xr is a chaotic sequence, Lr is equal to mn/16,
the ‘‘floor’’ operator rounds the number to the nearest integer
towards minus infinity, i = 1, 2, . . . , 4× mn/16+ 2000 and
j = 1, 2, . . . ,mn/16.
Fig. 5 illustrates such a bit-pair level rotation under the

parameterization such as tr1, tr2, tr3 and tr4 equal 2, 8, 4 and
19, as well as the number of ‘‘1’’ of the corresponding regions
are odd, even, even and odd. Therefore, the 4 regions labeled
with white, red, green and blue are counterclockwise rotated
with 2 bit-pairs, 8 bit-pairs, 4 bit-pairs and 19 bit-pairs,
respectively. One block rotation consists of 4 region rota-
tions, with 4 control instructions. So that each 16 bit-pairs of
4 pixels only need in average 1 region rotation with 1 control
instruction. For a image with size of m× n, just mn/4 region
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FIGURE 6. Transformation of bit-pair array to pixel.

rotations and control instructions is able to confuse it effi-
ciently and effectively.

B. ENCRYPTION OPERATION
As stated above, the bit-pair level rotation is an efficient
method to confuse the bit-pair matrix. However, the mod-
ification of one pixel can not spread to the whole image
after rotation, due to the limitation of block. To do so, one
original block is XORed with the previous rotated one. Then
the XORed block is added with the remainder in the division
of sum of elements in the previous rotated block by 4. And
the initial block used to process the first block is got from
the chaotic sequence taken from the former 2000 elements of
chaotic sequence in (7) to simplify the encryption algorithm
in this paper. The initial pixel block described as (9) is trans-
formed into initial bit-pair block according to Fig. 4.

P0i,j = floor[xr (1984+ (i− 1)×4+j)× 1010] mod 256,

(9)

where i = 1, 2, 3, 4, and j = 1, 2, 3, 4.
The ‘‘XOR’’, ‘‘add’’ and initial block are very useful not

only to diffuse the influence of the former pixels, but also to
enhance the encryption effect to image with big region of the
same pixel value.

After completing the ‘‘XOR’’, ‘‘add’’ and rotation oper-
ation on a block, move right with 8 bit-pairs in the row
direction and get another block needs to be processed, until
being up to the end horizontally. Then, move down with
8 bit-pairs and back to the far left and get another block
needs to be processed. Repeatedly, the first encryption step is
completed, while it comes to the end of the matrix with size of
2m × 2n. Finally, an image is reconstructed by transforming
this processed matrix with size of 2m × 2n into the matrix
with size of m × n. Finally, it is important to note that the
transformation of bit-pair array to pixel is not just simply
the reverse process of the transformation in Fig. 4. In Fig. 6,
Ci,j is used to represent the pixel after the first encryption
step, and is transformed from the processed bit-pair arrayCs,t

i,j
with (10).

Ci,j = C8,7
i,j × 64+ C6,5

i,j × 16+ C4,3
i,j × 4+ C2,1

i,j (10)

After the first encryption step, a change for pixels can
spread out to the pixels behind them, as a result of the pro-
cessing order from the upper left corner to the lower right
corner. Here, a XOR operation is carried from the lower
right to the upper left vertically to enhance the diffusion
property.

First of all, the pixels of the image I after the first encryp-
tion step form a one-dimensional array denoted as Q in

accordance with the order vertically from the lower right to
the upper left. The XOR is operated on Q using (11).

xd (i+ 1) = F(xd (i))
td (j) = floor[xd (j+ 2000)× 1010] mod 256
E(j) = [td (j)× 103 + E(j+ 1)] mod 256
⊕[Q(j)+ td (j)× 102] mod 256 ⊕ td (j)

(11)

where xd is a chaotic sequence and ‘‘floor’’ rounds the
number to the nearest integer towards minus infinity, i =
1, 2, . . . ,m × n + 2000 and j = m × n,m × n − 1, . . . , 1.
Besides, Q(m × n) is refreshed by [

∑m
u=m−7

∑n
v=n−7 Iu,v −

Im,n]mod 256 in case of the situation that change exists in the
last block not the last pixel of I .

In (11), E(j) denotes the j-th pixel value after the second
encryption step, and E(m × n + 1) is defined in (12). The
encrypted image is built by transforming the one-dimensional
cipher array E into two-dimensional m × n cipher matrix.
So, the change of later pixels is also able to influence former
pixels, after the second encryption step:

E(m× n+ 1) =

{
F1(xE ) mod p for odd l
F2(xE ) mod p for even l

(12)

where xE = (
∑m

u=m−31
∑n

v=n−31 Iu,v−Im,n) mod 256 /256×
p, p is the denominate of fraction form of control param-
eter r in the lowest term, l = (

∑m
u=m−31

∑n
v=n−31 Iu,v −

Im,n) mod 256, and functionsF1 andF2 are defined in (2)-(3).

C. DECRYPTION OPERATION
The decryption procedure is the reverse process of the
encryption described above. That is, firstly, making a
reverse diffusion on encrypted image using (13), then trans-
forming Q to m × n image I , and refreshing Im,n with
(
∑m

p=m−7
∑n

q=n−7 Ip,q− Im,n)mod 256. Finally, bit-pair level
rotation, ‘‘add’’ and ‘‘XOR’’ are carried out on the resulting
image in accordance with the order horizontally from the
lower right corner to the upper left corner.
xd (i+ 1) = F(xd (i))
td (j) = floor[xd (j+ 2000)× 1010] mod 256
Q(j) = {E(j)⊕ td (j)⊕ [td (j)× 103 + E(j+ 1)] mod 256
+256− td (j)× 102 mod 256} mod 256

(13)

where xd is a chaotic sequence, ‘‘floor’’ rounds the number
to the nearest integer towards minus infinity, i = 1, 2, . . . ,
m× n+ 2000 and j = 1, 2, . . . ,m× n.

IV. EXPERIMENT AND ANALYSIS
In this section, some experiments and analyses are performed.
All the tests in this paper are conducted under MATLAB
8.1.0.604 (R2013a) in a laptop with the Windows 10 operat-
ing system of 64-bit, Intel(R) Core(TM) i7-6700HQ CPU @
2.60GHz and 8 GB RAM. Besides, k12 and x(1) of MPSNC
map F used in the first encryption step and the second
encryption step are chosen as keys, while the other parameters
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FIGURE 7. Encryption and histograms. Our proposed algorithm is able to successfully encrypt the meaningful image into noise-like and make the
histograms uniform to obscure the information, even for the black image. (a1)-(a6) The original images; (b1)-(b6) Histograms of the original images;
(c1)-(c6) The cipher images; (d1)-(d6) Histograms of the cipher images.

are fixed as k11 = 1.5, k21 = 2.2, k22 = 0.2, r = 0.2
and s = 0.3. In order to distinguish these two key groups
utilized in different phases, (k12, x(1)) used in the first step
and the second step are denoted as key1 = (kr12, x

r (1)) and
key2 = (kd12, x

d (1)), respectively.

A. ENCRYPTED RESULTS AND
CORRESPONDING HISTOGRAMS
As examples to reveal the effect and security of the pro-
posed image encryption algorithm visually, the encryption
tests of several images, including Fingerprint, Lena, Dollar,
Airfield2, AirplaneU2 and Black image, are given in Fig. 7.
The keys are set as key1 = (0.6, 2.71) and key2 = (0.35, 4.8).
It is clear from Figs. 7(c1) - (c6), the encrypted images are
all like the noise, and impossible to find the content of the
original versions.

Furthermore, a histogram is used to reflect the distribu-
tion of pixel values of an image. The histograms of cipher
images in Fig. 7 is highly uniform, which are significantly
different from the corresponding histograms of the original
images. A uniform histogram is good at resisting statistical
attacks [16], [34]. Thus it can be said that the proposed

algorithm is good at transforming images into noise-like
encrypted images with uniform distributed histograms, even
the plain image is whole black.

B. KEY SPACE
As discussed in the description of the proposed algorithm,
the keys are divided into two steps. Meanwhile, the chaotic
map utilized in the scheme has 6 independent control param-
eters and 1 initial value. If the precision of the control
parameters and initial values reaches 10−15, the key space
can be up to 1015×7×2 = 10210 when all the parameters
and initial values are regarded as keys, theoretically. In the
experiments of this paper, only (kr12, x

r (1)) and (kd12, x
d (1))

are selected as keys for illustrating the process of encryption
concisely. In the condition that several parameters are fixed as
k11 = 1.5, k21 = 2.2, k22 = 0.2, r = 0.2 and s = 0.3, the rest
parameters like kr12 and kd12 are in range of (0, 0.625), xc(1)
and xd (1) belong to [0, 5). Besides, the length of each key is
set as 15 decimals. So the key space of the keys recommended
reaches (0.625×1015×5×1015)2 = 9.7656×1060. It is larger
than 2100 which is the demand suggested in [11] for resisting
brute-force attack, implying infeasibility of brute-force attack
to the proposed algorithm.
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TABLE 2. The RMSD between the cipher images with xr (1) = 2.71, kd
12 = 0.35, xd (1) = 4.8 and tiny fluctuation of 10−15 in kr

12. Our algorithm is
extremely sensitivity to the encryption key kr

12 with the high RMSDs between its two cipher images of tiny different kr
12.

TABLE 3. The RMSD between the cipher images with kr
12 = 0.6, kd

12 = 0.35, xd (1) = 4.8 and tiny fluctuation of 10−15 in xr (1). Our algorithm is extremely
sensitivity to the encryption key xr (1) with the high RMSDs between its two cipher images of tiny different xr (1).

TABLE 4. The RMSD between the cipher images with kr
12 = 0.6, xr (1) = 2.71, xd (1) = 4.8 and tiny fluctuation of 10−15 in kd

12. Our algorithm is extremely
sensitivity to the encryption key kd

12 with the high RMSDs between its two cipher images of tiny different kd
12.

FIGURE 8. Key sensitivity analysis of the encryption. Our algorithm is
sensitive to the encryption keys which are the guarantee of security.
(a) The original image; (b) The cipher image Ie1 with key1 = (0.6, 2.71)
and key2 = (0.35, 4.8); (c) The cipher image Ie2 with
key1 = (0.6+ 10−15, 2.71) and key2 = (0.35, 4.8); (d) Difference between
two cipher images Idif = |Ie1 − Ie2|.

C. KEY SENSITIVITY
The algorithm is designed to be sensitive to the encryption
keys which are the guarantee of security. In order to verify
this, the images encrypted using different keys are compared.
The original keys are set as key1 = (0.6, 2.71) and key2 =
(0.35, 4.8). Encrypted image in Fig. 8(b) is obtained using the

original keys to encrypt Fig. 8(a). For comparison, one of the
keys used to encrypt Fig. 8(a) into Fig. 8(c) is modified. The
modified key kr12 is changed from 0.6 to 0.6 + 10−15 while
the other keys remain the original value. The proportion of
different pixels between Figs. 8(b) and (c) reaches 99.5693%.
Fig. 8(d) shows the plot of the difference between these two
ciphers, using (14).

Idif = |Ie1 − Ie2|, (14)

where Ie1 and Ie2 are two encrypted images.
Furthermore, root mean square difference (RMSD) defined

in (15) is used to reflect the sensitivity to encryption keys,
numerically. Fig. 8(a) is encrypted with increasing kr12, x

r (1),
kd12 and x

d (1) by 10−15 a time, and the corresponding RMSDs
are displayed in Tables 2-5. It can be seen that all the RMSDs
are greater than 104, which reveals the huge difference
between each pair of ciphers.

RMSD =

 1
m× n

m∑
i=1

n∑
j=1

[Ie1(i, j)− Ie2(i, j)]2


1/2

(15)

All of these significant differences mentioned above
between the encrypted images are caused by a tiny change
10−15 on encryption keys. This means that the proposed algo-
rithm is extremely sensitive to the fluctuation in encryption
keys.

In a symmetric encryption algorithm, the encrypted image
can only be decrypted correctly using the same keys as the
encryption keys. Meanwhile, the algorithm must be sensitive
to the decryption keys. Fig. 9(b) are the encrypted results of
Fig. 9(a), using key1 = (0.6, 2.71) and key2 = (0.35, 4.8).
The decrypted results using the correct symmetric decryption
keys are displayed in Fig. 9(c). For comparison, decryp-
tion key xd (1) is changed to 4.8 + 10−15, while the other
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TABLE 5. The RMSD between the cipher images with kr
12 = 0.6, xr (1) = 2.71, kd

12 and tiny fluctuation of 10−15 in xd (1). Our algorithm is extremely
sensitivity to the encryption key xd (1) with the high RMSDs between its two cipher images of tiny different xd (1).

TABLE 6. The information entropy of the original image and encrypted image in Fig. 7. Our encrypted images reaches the high information entropy
exceeding at least 7.997604, which means effectively embedding the redundant information for obscuring the meaningful information in the original
image.

FIGURE 9. Key sensitivity analysis of the decryption. Our algorithm is
sensitive to the keys in decryption, which ensures the security. (a) The
original image; (b) The cipher image with key1 = (0.6, 2.71) and
key2 = (0.35, 4.8); (c) The decrypted image with the correct keys; (d) The
decrypted image with the wrong keys key1 = (0.6, 2.71) and
key2 = (0.35, 4.8+ 10−15).

keys remain unchanged. Utilizing this reconstructed key set,
Fig. 9(b) is decrypted unsuccessfully. This failed result is
displayed in Fig. 9(d) with error rate 99.6075%. We can see
that the algorithm is hypersensitive to decryption keys, and
the decryption keys need to be the same as the encryption
ones for the security.

D. INFORMATION ENTROPY
For describing the information redundancy and the feature
of randomness, Shannon [31] has introduced entropy into
information theory as information entropy (IFE). In an image
encryption system, IFE is given by (16).

H (l) =
2N−1∑
i=0

p(li)log2
1
p(li)

(16)

where p(li) represents the probability of gray level li in aN -bit
image.

The larger the IFE is, the more randomness and the
higher information redundancy that the image preforms. For
a grayscale image with 28 gray levels, the maximum value of
IFE can reach 8. In Table 6, the IFEs of the original images
and the encrypted images shown in Fig. 7 are listed. It can
be found that the IFE of the image after encryption is very
close to 8, even the original image is a black one, which
means the proposed algorithm performs well on improving
the information entropy.

E. CORRELATION
The relationship between the variables can be measured by
correlation coefficient which is described by (17).

ρxy =
E {[x − E(x)] [y− E(y)]}

√
D(x)
√
D(y)

E(x) =
1
l

l∑
i=1

xi

D(x) =
1
l

l∑
i=1

[xi − E(x)]2

(17)

In general, there is a strong correlation between adja-
cent pixels in a meaningful image. Our encryption operation
have an strong ability to break this correlation. Because the
selected pixels are random and the number of the selected
pixels is finite, using correlation coefficient calculated from
a group of pixels to demonstrate the correlation of an
image is insufficient. Thus, we decide to randomly select
5 groups of 2000 pixel-pairs from the original image and
encrypted image in each direction. Then the correspond-
ing correlation coefficients and the averages of the abso-
lute values of the correlation coefficients along the same
direction are calculated. In Table 7, the calculated results
of the original image and encrypted image of image Lena
are listed. Besides, Fig. 10 shows the correlation distribution
of the original and encrypted versions of image Lena in all
directions.

From Table 7 and Fig. 10, it is easy to see that the proposed
algorithm can greatly break the correlation between adjacent
pixels.

VOLUME 7, 2019 99477



R. Ge et al.: Novel Chaos-Based Symmetric Image Encryption Using Bit-Pair Level Process

TABLE 7. The correlation coefficients of the original image and encrypted
image of image Lena. Our encryption excellently breaks this correlation in
the meaningful image.

FIGURE 10. Correlation distribution. Our encryption successfully makes
correlation distribution uniform, indicating breaking the correlation in the
meaningful image. (a), (b) and (c) Correlation of two horizontally,
vertically, and diagonally adjacent pixels of original Lena image,
respectively; (d), (e) and (f) Correlation of two horizontally, vertically, and
diagonally adjacent pixels of cipher Lena image, respectively.

F. RESISTANCE TO DIFFERENTIAL ATTACK
In order to study the resistance of encryption algorithm to
differential attack, the number of pixels change rate (NPCR)
and the unified average changing intensity (UACI) were cal-
culated between the cipher images encrypted from two origi-
nal images that have tiny difference. If a tiny modification in
original image cause a significant change in encrypted image,
the differential attack is considered invalid. Let Ie1(i, j) and
Ie2(i, j) denote the pixels located at (i, j) in encrypted images
Ie1 and Ie2 with size of m× n. And the NPCR and UACI are
defined by (18)-(20).

D(i, j) =

{
1 Ie1(i, j) 6= Ie2(i, j)
0 Ie1(i, j) = Ie2(i, j)

(18)

NPCR =

∑M
i=1

∑N
j=1D(i, j)

M × N
× 100% (19)

UACI =

∑M
i=1

∑N
j=1
|Ie1(i,j)−Ie2(i,j)|

255

M × N
× 100% (20)

Figs. 7(a1) - (a6) and their modified versions obtained by
changing the last bit of the first, middle and last pixels are
chosen as the plain images. The corresponding NPCRs and
UACIs at one round of encryption are listed in Tables 8 and 9,
compared with four existing encryption algorithms. As can
be seen, NPCR and UACI of the proposed algorithm respec-
tively exceed 99.5968% and 33.4038%, respectively, which
performs much better than the others. Furthermore, the

TABLE 8. Comparative study on NPCR. Our proposed algorithm gains
highest NPCR for most robustly resisting the differential attack.

TABLE 9. Comparative study on UACI. Our proposed algorithm gains
highest UACI for most robustly resisting the differential attack.

TABLE 10. Comparative study on speed of one round encryption. The
proposed algorithm gets a higher one round encryption speed than
Ref. [27], Ref. [28], Ref. [30]. It is also more quicker than Ref. [29], because
it only needs one round process for effective encryption while Ref. [29]
need at least three rounds.

proposed algorithm also gets higher average NPCR
99.7641% and average UACI 33.6158%, compared with
99.5415% and 33.3274% of Ref. [27], 99.6229% and
33.5813% of Ref. [28], 0.2312% and 0.0781% of Ref. [29],
and 99.6085% and 33.3947% of Ref. [30]. Thus, these com-
parison results support the fact that the proposed algorithm
has a superior property in resisting differential attack.

G. RESISTANCE TO BLIND DECRYPTION
Our excellent cryptosystem is robust enough to withstand
blind decryption. In order to address it, the decryption of
the cipher image with correct and wrong keys is carried out.
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Themean square error (MSE) between the original image and
the decrypted image is used to judge the decryption. MSE is
defined as (21).

MSE =

∑M
i=1

∑N
j=1 [Io(i, j)− Id (i, j)]

2

M × N
× 100% (21)

where Io(i, j) and Id (i, j) are the pixels at grid (i, j) of original
image Io and decrypted image Id with size of m× n.
Two hundred and fifty different key combinations of

(kr12, x
r (1))and(kd12, x

d (1)) are used, with the correct keys
key1 = (0.6, 2) and key2 = (0.35, 4). The plots of the
corresponding MSE are displayed in Fig. 11, which indicates
that only the MSE of the correct keys is equal to 0, and
all the others nearly reach 8000. Therefore, the proposed
algorithm proves to be extremely robust to withstand blind
decryption.

FIGURE 11. Analysis of MSE. Our excellent cryptosystem is robust to
withstand the blind decryption. (a) The MSE curve with various values
of kr

12; (b) The MSE curve with various values of xr (1); (c) The MSE curve
with various values of kd

12; (d) The MSE curve with various
values of xd (1).

H. SPEED PERFORMANCE
Besides security, speed is another important requirement
of image encryption. Here, the images with different sizes
(256 × 256, 512 × 512 and 1024 × 1024) are encrypted
by the proposed encryption algorithm and the methods in
Ref. [27], Ref. [28], Ref. [29] and Ref. [30] with 100 times
to calculate the average encryption time. It is found from
Table 9 that the time of one encryption round the proposed
algorithm consumes is shorter than that for the methods in
Ref. [27], Ref. [28] and the method in Ref. [30], but longer
than that of Ref. [29]. However, Ref. [29] requires at least
three encryption rounds to guarantee high NPCR and UACI
as demonstrated in its literature. In summary, the proposed
one gets the highest speed for image encryption.

V. CONCLUSION
In this paper, a novel chaos-based symmetric image encryp-
tion scheme has been proposed. It is realized by two steps: bit-
pair level process and pixel level diffusion. First, each pixel

is divided into 4 bit-pairs, and the image is transformed into a
bit-pair matrix. For each 8×8 bit-pair block, it is XORedwith
the previous processed one and added with the remainder in
the division of sum of elements in the previously processed
block by 4. Then, four regions from inside to outside of the
block are rotated in accordance with the orders obtained from
the block itself and chaotic map. This operation not only
relocates the bits of pixels, but also spreads the influence
of former pixels to latter ones. In the second step, an XOR
operation is applied on the pixels from the lower right corner
to the upper left corner in order to enhance the diffusion
property. Experiment results and analysis show that the pro-
posed algorithm reaches a high security, even the object is a
black image. Especially compared with Ref. [27], Ref. [28],
Ref. [29] and Ref. [30], it gets higher NPCR and UACI after
one round of encryption. Furthermore, it also encrypts image
faster than the methods in Ref. [27], Ref. [28], Ref. [29] and
Ref. [30] due to bit-pair level process, especially bit-pair level
rotation. Moreover, the chaotic series utilized in encryption
is obtained from the MPCSNC map. The advantages of this
chaotic map lie in its abundant parameters, wide chaotic
range, ergodicity, structure complexity and high sensitivity,
which all prove the superiority of this map in encryption.
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