A. L. Hevener, D. J. Clegg, M. , and F. , Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome, Mol Cell Endocrinol, vol.418, pp.306-321, 2015.

M. C. Valera, C. Fontaine, M. Dupuis, E. Noirrit-esclassan, A. Vinel et al., Towards optimization of estrogen receptor modulation in medicine, Pharmacol Ther, vol.189, pp.123-129, 2018.

X. Wang, Y. Lu, E. Wang, Z. Zhang, X. Xiong et al., Hepatic estrogen receptor alpha improves hepatosteatosis through upregulation of small heterodimer partner, J Hepatol, vol.63, pp.183-190, 2015.

L. Zhu, W. C. Brown, Q. Cai, A. Krust, P. Chambon et al., Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance, Diabetes, vol.62, pp.424-434, 2013.

C. L. Smith, O. Malley, and B. W. , Coregulator function: a key to understanding tissue specificity of selective receptor modulators, Endocr Rev, vol.25, pp.45-71, 2004.

. Handgraaf-s,-riant-e, A. Fabre, A. Waget, R. Burcelin, and P. Liere, Prevention of obesity and insulin resistance by estrogens requires ERalpha activation function-2 (ERalphaAF-2), whereas ERalphaAF-1 is dispensable, Diabetes, vol.62, pp.4098-4108, 2013.

M. Berry, D. Metzger, and P. Chambon, Role of the two activating domains of the oestrogen receptor in the cell-type and promotercontext dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen, EMBO J, vol.9, pp.2811-2818, 1990.

M. Guillaume, S. Handgraaf, A. Fabre, I. Raymond-letron, E. Riant et al., Selective activation of estrogen receptor alpha activation function-1 is sufficient to prevent obesity, steatosis, and insulin resistance in mouse, Am J Pathol, vol.187, pp.1273-1287, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01603827

S. Della-torre, G. Rando, C. Meda, A. Stell, P. Chambon et al., Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-1, Cell Metab, vol.13, pp.205-214, 2011.

J. Strelau, A. Strzelczyk, P. Rusu, G. Bendner, S. Wiese et al., Progressive postnatal motoneuron loss in mice lacking GDF-15, J Neurosci, vol.29, pp.13640-13648, 2009.

M. Matic, G. Bryzgalova, H. Gao, P. Antonson, P. Humire et al., Estrogen signalling and the metabolic syndrome: targeting the hepatic estrogen receptor alpha action, PLoS ONE, vol.8, p.57458, 2013.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, vol.37, pp.911-917, 1959.

A. Barrans, X. Collet, R. Barbaras, B. Jaspard, J. Manent et al., Hepatic lipase induces the formation of pre-beta 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases, J Biol Chem, vol.269, pp.11572-11577, 1994.

J. H. Kim, M. S. Meyers, S. S. Khuder, S. L. Abdallah, H. T. Muturi et al., Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice, Mol Metab, vol.3, pp.177-190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01186418

H. Johnen, S. Lin, T. Kuffner, D. A. Brown, V. W. Tsai et al., Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1, Nat Med, vol.13, pp.1333-1340, 2007.

V. W. Tsai, R. Manandhar, S. B. Jorgensen, K. K. Lee-ng, H. P. Zhang et al., The anorectic actions of the TGFbeta cytokine MIC-1/GDF15 require an intact brainstem area postrema and nucleus of the solitary tract, PLoS ONE, vol.9, p.100370, 2014.

G. Palierne, A. Fabre, R. Solinhac, L. Peron, C. Avner et al., Changes in gene expression and estrogen receptor cistrome in mouse liver upon acute E2 treatment, Mol Endocrinol, vol.30, pp.709-732, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357623

X. Lu, X. He, J. Su, J. Wang, X. Liu et al., EZH2-mediated epigenetic suppression of GDF15 predicts a poor prognosis and regulates cell proliferation in non-small-cell lung cancer, Mol Ther Nucleic Acids, vol.12, pp.309-318, 2018.

A. Rada-iglesias, R. Bajpai, T. Swigut, S. A. Brugmann, R. A. Flynn et al., A unique chromatin signature uncovers early developmental enhancers in humans, Nature, vol.470, pp.279-283, 2011.

S. Bruno, P. Maisonneuve, P. Castellana, N. Rotmensz, S. Rossi et al., Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial, BMJ, vol.330, p.932, 2005.

L. K. Cole, R. L. Jacobs, and D. E. Vance, Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis, Hepatology, vol.52, pp.1258-1265, 2010.

C. J. Lelliott, M. Lopez, R. K. Curtis, N. Parker, M. Laudes et al., Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis, FASEB J, vol.19, pp.1108-1119, 2005.

T. Miyashita, Y. Toyoda, K. Tsuneyama, T. Fukami, M. Nakajima et al., Hepatoprotective effect of tamoxifen on steatosis and non-alcoholic steatohepatitis in mouse models, J Toxicol Sci, vol.37, pp.931-942, 2012.

A. M. Ceasrine, N. Ruiz-otero, E. E. Lin, D. N. Lumelsky, E. D. Boehm et al., Tamoxifen improves glucose tolerance in a delivery, sex, and strain-dependent manner in mice, Endocrinology, vol.160, pp.782-790, 2019.

C. Lampert, D. M. Arcego, D. P. Laureano, L. A. Diehl, C. Da et al., Effect of chronic administration of tamoxifen and/or estradiol on feeding behavior, palatable food and metabolic parameters in ovariectomized rats, Physiol Behav, vol.119, pp.17-24, 2013.

P. E. Goss, S. Qi, and H. Hu, Comparing the effects of atamestane, toremifene and tamoxifen alone and in combination, on bone, serum lipids and uterus in ovariectomized rats, J Steroid Biochem Mol Biol, vol.113, pp.233-240, 2009.

J. Reckless, J. C. Metcalfe, and D. J. Grainger, Tamoxifen decreases cholesterol sevenfold and abolishes lipid lesion development in apolipoprotein E knockout mice, Circulation, vol.95, pp.1542-1548, 1997.

H. Z. Ke, H. K. Chen, H. A. Simmons, H. Qi, D. T. Crawford et al., Comparative effects of droloxifene, tamoxifen, and estrogen on bone, serum cholesterol, and uterine histology in the ovariectomized rat model, Bone, vol.20, pp.31-39, 1997.

F. Mauvais-jarvis, D. J. Clegg, and A. L. Hevener, The role of estrogens in control of energy balance and glucose homeostasis, Endocr Rev, vol.34, pp.309-338, 2013.

Y. Xu, T. P. Nedungadi, L. Zhu, N. Sobhani, B. G. Irani et al., Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction, Cell Metab, vol.14, pp.453-465, 2011.

M. Lopez, C. J. Lelliott, S. Tovar, W. Kimber, R. Gallego et al., Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA, Diabetes, vol.55, pp.1327-1336, 2006.

W. J. Wallen, M. P. Belanger, and C. Wittnich, Sex hormones and the selective estrogen receptor modulator tamoxifen modulate weekly body weights and food intakes in adolescent and adult rats, J Nutr, vol.131, pp.2351-2357, 2001.

G. N. Wade and H. W. Heller, Tamoxifen mimics the effects of estradiol on food intake, body weight, and body composition in rats, Am J Physiol, vol.264, pp.1219-1223, 1993.

K. G. Kumar, J. L. Trevaskis, D. D. Lam, G. M. Sutton, R. A. Koza et al., Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism, Cell Metab, vol.8, pp.468-481, 2008.

Q. Ding, T. Mracek, P. Gonzalez-muniesa, K. Kos, J. Wilding et al., Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes, Endocrinology, vol.150, pp.1688-1696, 2009.

L. Yang, C. C. Chang, Z. Sun, D. Madsen, H. Zhu et al., GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand, Nat Med, vol.23, pp.1158-1166, 2017.

S. E. Mullican, X. Lin-schmidt, C. N. Chin, J. A. Chavez, J. L. Furman et al., GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates, Nat Med, vol.10, pp.1150-1157, 2017.

P. J. Emmerson, F. Wang, Y. Du, Q. Liu, R. T. Pickard et al., The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL, Nat Med, vol.23, pp.1215-1219, 2017.

L. Macia, V. W. Tsai, A. D. Nguyen, H. Johnen, T. Kuffner et al., Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets, PLoS ONE, vol.7, p.34868, 2012.

V. W. Tsai, L. Macia, H. Johnen, T. Kuffner, R. Manadhar et al., TGF-b superfamily cytokine MIC-1/ GDF15 is a physiological appetite and body weight regulator, PLoS ONE, vol.8, p.55174, 2013.

K. H. Kim, S. H. Kim, D. H. Han, Y. S. Jo, Y. H. Lee et al., Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice, Sci Rep, vol.8, p.6789, 2018.

. Tabula-muris-consortium, Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris, Nature, vol.562, pp.367-372, 2018.

V. C. Jordan, Tamoxifen: a most unlikely pioneering medicine, Nat Rev Drug Discov, vol.2, pp.205-213, 2003.

B. Finan, B. Yang, N. Ottaway, K. Stemmer, T. D. Muller et al., Targeted estrogen delivery reverses the metabolic syndrome, Nat Med, vol.18, pp.1847-1856, 2012.