N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, vol.103, pp.15729-15735, 2006.

D. G. Nocera, The artificial leaf, Acc. Chem. Res, vol.45, pp.767-776, 2012.

J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, and S. Ardo, Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting, Energy Environ. Sci, vol.8, pp.2811-2824, 2015.

B. M. Hunter, H. B. Gray, and A. M. Müller, Earth-abundant heterogeneous water oxidation catalysts, Chem. Rev, vol.116, pp.14120-14136, 2016.

C. Spöri, The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chem. Int. Ed, vol.56, pp.5994-6021, 2017.

C. R. Lhermitte and K. Sivula, Alternative oxidation reactions for solar-driven fuel production, ACS Catal, vol.9, pp.2007-2017, 2019.

B. K. Boggs, R. L. King, and G. G. Botte, Urea electrolysis: direct hydrogen production from urine, Chem. Commun, vol.38, pp.4859-4861, 2009.

R. P. Forslund, Nanostructured LaNiO 3 Perovskite electrocatalyst for enhanced urea oxidation, ACS Catal, vol.6, pp.5044-5051, 2016.

Z. Yu, Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis, Energy Environ. Sci, vol.11, pp.1890-1897, 2018.

G. Wang, Solar driven hydrogen releasing from urea and human urine, Energy Environ. Sci, vol.5, pp.8215-8219, 2012.

A. N. Rollinson, J. Jones, V. Dupont, and M. V. Twigg, Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply, Energy Environ. Sci, vol.4, pp.1216-1224, 2011.

K. Sun, Enabling silicon for solar-fuel production, Chem. Rev, vol.114, pp.8662-8719, 2014.

X. G. Zhang, Electrochemistry of Silicon and Its Oxide, 2001.

M. J. Kenney, High-performance silicon photoanodes, Science, vol.342, pp.836-841, 2013.

S. Hu, Amorphous TiO 2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation, Science, vol.344, pp.1005-1009, 2014.

F. A. Laskowski, M. R. Nellist, R. Venkatkarthick, and S. W. Boettcher, Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry, Energy Environ. Sci, vol.10, pp.570-579, 2017.

G. Xu, Silicon photoanodes partially covered by Ni@Ni(OH) 2 core-shell particles for photoelectrochemical water oxidation, ChemSusChem, vol.10, pp.2897-2903, 2017.

A. G. Scheuermann, Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes, Nat. Mater, vol.15, pp.99-105, 2016.

I. A. Digdaya, G. W. Adhyaksa, B. J. Trze?niewski, E. C. Garnett, and W. A. Smith, Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation, Nat. Commun, vol.8, p.15968, 2017.

J. C. Hill, A. T. Landers, and J. A. Switzer, An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation, Nat. Mater, vol.14, pp.1150-1155, 2015.

K. Oh, Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes, Energy Environ. Sci, vol.11, pp.2590-2599, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01900872

G. Loget, Water oxidation with inhomogeneous metal-silicon interfaces, Curr. Opin. Colloid Interface Sci, vol.39, pp.40-50, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02051171

D. Ellis, M. Eckhoff, and V. D. Neff, Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue, J. Phys. Chem, vol.85, pp.1225-1231, 1981.

S. Sinha, B. D. Humphrey, and A. B. Bocarsly, Reaction of nickel electrode surfaces with anionic metal-cyanide complexes: formation of precipitated surfaces, Inorg. Chem, vol.23, pp.203-212, 1984.

E. S. Lambers, C. N. Dykstal, J. M. Seo, J. E. Rowe, and P. H. Holloway, Roomtemperature oxidation of Ni(110) at low and atmospheric oxygen pressures, Oxid. Met, vol.45, pp.301-321, 1996.

S. Tricard, Sequential growth in solution of NiFe Prussian Blue coordination network nanolayers on Si(100), Surf. Dalt. Trans, vol.41, pp.1582-1590, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02403381

A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2001.

Y. B. Vogel, Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry, Nat. Commun, vol.8, p.2066, 2017.

G. Loget, B. Fabre, S. Fryars, C. Mériadec, and S. Ababou-girard, Dispersed Ni nanoparticles stabilize silicon photoanodes for efficient and inexpensive sunlight-assisted water oxidation, ACS Energy Lett, vol.2, pp.569-573, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517483

Y. Nakato and H. Tsubomura, Silicon photoelectrodes modified with ultrafine metal islands, Electrochim. Acta, vol.37, pp.897-907, 1992.

D. S. Hall, C. Bock, and B. R. Macdougall, The Electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution, J. Electrochem. Soc, vol.160, pp.235-243, 2013.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, The role of the Auger parameter in XPS studies of nickel metal, halides and oxides, Phys. Chem. Chem. Phys, vol.14, pp.2434-2442, 2012.

L. Trotochaud, J. K. Ranney, K. N. Williams, and S. W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution, J. Am. Chem. Soc, vol.134, pp.17253-17261, 2012.

K. Sun, Stable solar-driven water oxidation to O 2 (g) by Ni-oxide-coated silicon photoanodes, J. Phys. Chem. Lett, vol.6, pp.592-598, 2015.

J. Yang, A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes, Nat. Mater, vol.16, pp.335-341, 2017.

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, NiFe alloy protected silicon photoanode for efficient water splitting, Adv. Energy Mater, vol.7, pp.1-6, 2017.

Z. Xinghao, 570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition, Energy Environ. Sci, vol.9, pp.892-897, 2016.