J. Adam and X. Zhang, Chalcogenide glasses: Preparation, properties and applications, 2014.

S. Song, Spin-coating of Ge 23 Sb 7 S 70 chalcogenide glass thin films, J. Non. Cryst. Solids, vol.355, pp.2272-2278, 2009.

X. Song, W. Zhou, X. Liu, Y. Gu, and S. Zhang, Layer-controlled band alignment, work function and optical properties of few-layer GeSe, Phys. B Condens. Matter, vol.519, pp.90-94, 2017.

Y. Wang, Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses, J. Non. Cryst. Solids, vol.459, pp.88-93, 2017.

C. Qiao, Evolution of short-and medium-range order in the melt-quenching amorphization of Ge 2 Sb 2 Te 5, J. Mater. Chem. C, vol.6, p.5001, 2018.

M. Xu, Y. Q. Cheng, H. W. Sheng, and E. Ma, Nature of atomic bonding and atomic structure in the phase-change Ge 2 Sb 2 Te 5 glass, Phys. Rev. Lett, vol.103, p.195502, 2009.

K. Xu, X. Miao, and M. Xu, The structure of phase-change chalcogenides and their high-pressure behavior, Phys. Status Solidi RRL, vol.13, p.1800506, 2019.

Y. R. Guo, Structural signature and transition dynamics of Sb 2 Te 3 melt upon fast cooling, Phys. Chem. Chem. Phys, vol.20, p.11768, 2018.

S. Molnar, R. Bohdan, V. Takats, Y. Kaganovskii, and S. Kokenyesi, Viscosity of As 20 Se 80 amorphous chalcogenide films, Mater. Lett, vol.228, pp.384-386, 2018.

N. Mehta, Applications of chalcogenide glasses in electronics and optoelectronics: A review, J. Sci. Ind. Res, vol.65, pp.777-786, 2006.

S. Raoux, W. We?nic, and D. Lelmini, Phase change materials and their application to nonvolatile memories, Chem. Rev, vol.110, pp.240-267, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01081911

B. J. Eggleton, B. Luther-davies, K. Richardson, . Chalcogenide, and . Photonics, Nat. Photonics, vol.5, pp.141-148, 2011.

A. Zakery and S. R. Elliott, Optical properties and applications of chalcogenide glasses: a review, J. Non. Cryst. Solids, vol.330, pp.1-12, 2003.

A. Zakery and S. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications, vol.135, 2007.

M. Olivier, Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films, Opt. Mater. Express, vol.5, pp.781-793, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166153

M. Bou?ka, Pulsed laser deposited GeTe-rich GeTe-Sb 2 Te 3 thin films, Sci. Rep, vol.6, p.26552, 2016.

T. Halenkovi?, Amorphous Ge-Sb-Se thin films fabricated by co-sputtering: Properties and photosensitivity, J. Am. Ceram. Soc, vol.101, pp.2877-2887, 2018.

E. Baudet, Experimental design approach for deposition optimization of RF sputtered chalcogenide thin films devoted to environmental optical sensors, Sci. Rep, vol.7, p.3500, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544248

F. Verger, RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy, Opt. Mater. Express, vol.3, pp.2112-2131, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00780091

D. Mandal, Intensity mediated change in the sign of ultrafast third-order nonlinear optical response in As 2 S 2 thin films, Opt. Lett, vol.43, pp.4787-4790, 2018.

S. L. Benjamin, Chemical vapour deposition of antimony chalcogenides with positional and orientational control: Precursor design and substrate selectivity, J. Mater. Chem. C, vol.3, pp.423-430, 2015.

A. Abrutis, Chemical vapor deposition of chalcogenide materials for phase-change memories, Microelectron. Eng, vol.85, pp.2338-2341, 2008.

P. N?mec, Optical properties of (GeSe 2 ) 100-x (Sb 2 Se 3 ) x glasses in near-and middle-infrared spectral regions, Mater. Res. Bull, vol.51, pp.176-179, 2014.

W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Luther-davies, Correlation between structural and physical properties in Ge-Sb-Se glasses, J. Phys. Chem. C, vol.117, pp.16571-16576, 2013.

A. Yang, Ga-Sb-S chalcogenide glasses for mid-infrared applications, J. Am. Ceram. Soc, vol.99, pp.12-15, 2016.

A. Lecomte, V. Nazabal, D. Le-coq, and L. Calvez, Ge-free chalcogenide glasses based on Ga-Sb-Se and their stabilization by iodine incorporation, J. Non. Cryst. Solids, vol.481, pp.543-547, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695550

A. K. Mairaj, Advances in gallium lanthanum sulphide glass for optical fiber and devices, SPIE 4204, Fiber Optic Sensor Technology II, pp.278-286, 2001.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass, Opt. Lett, vol.21, pp.1594-1596, 1996.

H. Tawarayama, Optical amplification at 1.3 ?m in a praseodymium-doped sulfide-glass fiber, J. Am. Ceram. Soc, vol.96, pp.792-796, 2000.

G. Li, Er 3+ doped and Er 3+ /Pr 3+ co-doped gallium-antimony-sulphur chalcogenide glasses for infrared applications, Opt. Mater. Express, vol.6, p.3849, 2016.

Q. Jiao, Effect of gallium environment on infrared emission in Er 3+ -doped gallium-antimony-sulfur glasses, Sci. Rep, vol.7, p.41168, 2017.

Y. Lu, Phase change characteristics of Sb-rich Ga-Sb-Se materials, J. Alloys Compd, vol.586, pp.669-673, 2014.

Y. Lu, Ga-Sb-Se material for low-power phase change memory, Appl. Phys. Lett, vol.99, p.243111, 2011.

S. D. Pangavhane, Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses, Rapid Commun. Mass Spectrom, vol.28, pp.1221-1232, 2014.

S. Pangavhane, P. N?mec, T. Wagner, J. Janca, and J. Havel, Laser desorption ionization time-of-flight mass spectrometric study of binary As-Se glasses, Rapid Commun. Mass Spectrom, vol.24, 2000.

K. ?útorová, Laser desorption ionization time-of-flight mass spectrometry of glasses and amorphous films from Ge-As-Se system, J. Am. Ceram. Soc, vol.99, pp.3594-3599, 2016.

J. Hou?ka, Laser ablation of AgSbS 2 and cluster analysis by time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom, vol.23, pp.1715-1718, 2009.

R. M. Mawale, Laser desorption ionization of As 2 Ch 3 (Ch = S, Se, and Te) chalcogenides using quadrupole ion trap time-offlight mass spectrometry: A comparative study, J. Am. Soc. Mass Spectrom, vol.28, pp.2569-2579, 2017.

P. L. Urban, A. Amantonico, and R. Zenobi, Lab-on-a-plate: Extending the functionality of MALDI-MS and LDI-MS targets, Mass Spectrom. Rev, vol.30, pp.435-478, 2011.

K. C. Hung, H. Rashidzadeh, Y. Wang, and B. Guo, Use of paraffin wax film in MALDI-ToF analysis of DNA, Anal. Chem, vol.70, pp.3088-3093, 1998.

J. Wang, R. Chen, M. Ma, and L. Li, MALDI MS sample preparation by using paraffin wax film: Systematic study and application for peptide analysis, Anal. Chem, vol.80, pp.491-500, 2008.

Y. Zhao, W. Xu, Q. Li, Y. Xie, and H. F. Schaefer, Gallium clusters Ga n (n = 1-6): Structures, thermochemistry, and electron affinities, J. Phys. Chem. A, vol.108, pp.7448-7459, 2004.

S. Núñez, J. M. López, and A. Aguado, Neutral and charged gallium clusters: Structures, physical properties and implications for the melting features, Nanoscale, vol.4, pp.6481-6492, 2012.

N. Drebov, F. Weigend, and R. Ahlrichs, Structures and properties of neutral gallium clusters: A theoretical investigation, J. Chem. Phys, vol.135, p.44314, 2011.

X. G. Gong and E. Tosatti, Structure of small gallium clusters, Phys. Lett. A, vol.166, pp.369-372, 1992.

M. E. Geusic, R. R. Freeman, and M. A. Duncan, Neutral and ionic clusters of antimony and bismuth: A comparison of magic numbers, J. Chem. Phys, vol.89, pp.223-229, 1988.

V. Sundararajan and V. Kumar, Ab initio molecular dynamics study of antimony clusters, J. Chem. Phys, vol.102, pp.9631-9637, 1995.

R. O. Jones, O. Ahlstedt, J. Akola, and M. Ropo, Density functional study of structure and dynamics in liquid antimony and Sb n clusters, J. Chem. Phys, vol.146, p.194502, 2017.

A. Alparone, Density functional theory Raman spectra of cyclic selenium clusters Se n (n = 5-12), Comput. Theor. Chem, vol.988, pp.81-85, 2012.

D. Hohl, R. O. Jones, R. Car, and M. Parrinello, The structure of selenium clusters Se 3 to Se 8, Chem. Phys. Lett, vol.139, pp.540-545, 1987.

V. Gurin, O. Shpotyuk, and V. Boyko, Calculation of small arsenic and antimony chalcogenide clusters with an application to vitreous chalcogenide structure, 2015.

L. Ghalouci, First principle investigation into hexagonal and cubic structures of Gallium Selenide, Comput. Mater. Sci, vol.67, pp.73-82, 2013.

L. Pe?inka, P. Lubomir, and J. Havel, Gallium selenide clusters generated via laser desorption ionisation time-of-flight quadrupole ion trap mass spectrometry, Rapid Commun. Mass Spectrom, vol.33, pp.719-726, 2019.

H. Fei, L. Prokes, and J. Havel, Laser ablation generation of antimony selenide clusters: laser desorption ionization (LDI) quadrupole ion trap time of flight mass spectrometry, J. Am. Soc. Mass Spectrom, vol.30, pp.634-638, 2019.

E. Van-lenthe and E. J. Baerends, Optimized Slater-type basis sets for the elements 1-118, J. Comput. Chem, vol.24, pp.1142-1156, 2003.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, Relativistic regular two-component Hamiltonians, J. Chem. Phys, vol.99, pp.4597-4610, 1993.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, Relativistic total energy using regular approximations, J. Chem. Phys, vol.101, pp.9783-9792, 1994.

E. Van-lenthe, A. Ehlers, and E. Baerends, Geometry optimizations in the zero order regular approximation for relativistic effects, J. Chem. Phys, vol.110, pp.8943-8953, 1999.

M. Swart, A. W. Ehlers, and K. Lammertsma, Performance of the OPBE exchange-correlation functional, Mol. Phys, vol.102, pp.2467-2474, 2004.

G. T. Velde, Chemistry with ADF. J. Comput. Chem, vol.22, pp.931-967, 2001.

C. F. Guerra, J. G. Snijders, G. Velde, and E. J. Baerends, Regular article Towards an order-N DFT method, Theor. Chem. Acc, vol.99, pp.391-403, 1998.

M. J. Frisch, Gaussian 16, Revision B.01, 2016.

K. Sladkova, J. Houska, and J. Havel, Laser desorption ionization of red phosphorus clusters and their use for mass calibration in timeof-flight mass spectrometry, Rapid Commun. Mass Spectrom, vol.23, pp.3114-3118, 2009.