D. M. Walba, M. Richards, and R. C. Haltiwanger, Total Synthesis of the First Molecular Möbius Strip, J. Am. Chem. Soc, vol.104, pp.3219-3221, 1982.

, For reviews, see: (a) Rzepa, H. S. Möbius Aromaticity and Delocalization, (b) Herges, R. Topology in Chemistry: Designing Möbius Molecules, vol.105, pp.4820-4842, 2005.

D. Ajami, O. Oeckler, A. Simon, R. Herges, C. Castro et al., Synthesis of a Möbius Aromatic Hydrocarbon, P. Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius, vol.426, 2003.

, Annulene Aromaticity. J. Am. Chem. Soc, vol.127, pp.2425-2432, 2005.

M. St?pie?, L. Latos-gra?y?ski, N. Sprutta, P. Chwalisz, and L. Szterenberg, Expanded Porphyrin with a Split Personality: A Hückel-Möbius Aromaticity Switch, Angew. Chem. Int. Ed, vol.46, pp.7869-7873, 2007.

J. Sankar, S. Mori, S. Saito, H. Rath, M. Suzuki et al., Unambiguous Identification of Möbius Aromaticity for meso-Aryl, J. Am. Chem. Soc, vol.130, pp.13568-13579, 2008.

J. L. Sessler, D. Seidel, Z. S. Yoon, A. Osuka, D. Kim et al., Control and Switching of Aromaticity in Various AllAza-Expanded Porphyrins: Spectroscopic and Theoretical Analyses, Möbius Bands, and More: Conformation and Aromaticity of Porphyrinoids, vol.42, pp.2839-2909, 1921.

E. Heilbronner, Hückel Molecular Orbitals of Möbius-Type Conformations of Annulenes, Tetrahedron Lett, vol.5, pp.1923-1928, 1964.

T. Higashino, J. M. Lim, T. Miura, S. Saito, J. Shin et al., A Möbius Antiaromatic Complex as a Kinetically Controlled Product in Phosphorus Insertion to a [32]Heptaphyrin, Angew. Chem., Int. Ed, vol.49, pp.13105-13108, 2010.

J. Oh, Y. M. Sung, W. Kim, S. Mori, A. Osuka et al., The Extension of Baird's Rule to Twisted Heteroannulenes: Aromaticity Reversal of Singly and Doubly Twisted Molecular Systems in the Lowest Triplet State, Angew. Chem., Int. Ed, vol.55, pp.2932-2936, 2016.

T. Tanaka, T. Sugita, S. Tokuji, S. Saito, and A. Osuka, Metal Complexes of Chiral Möbius Aromatic [28]Hexaphyrin(1.1.1.1.1.1): Enantiomeric Separation, Absolute Stereochemistry, and Asymmetric Synthesis, Angew. Chem., Int. Ed, vol.49, pp.6619-6621, 2010.

H. Ruffin, G. Nyame-mendendy-boussambe, T. Roisnel, V. Dorcet, B. Boitrel et al., Tren-Capped Hexaphyrin Zinc Complexes: Interplaying Molecular Recognition, Möbius Aromaticity, and Chirality, J. Am. Chem. Soc, vol.139, pp.13847-13857, 2017.

E. L. Eliel, S. H. Wilen, H. Yamamoto, and E. M. Carreira, Stereochemistry of Organic Compounds, Comprehensive Chirality, 1994.

M. G. Neves, R. M. Martins, A. C. Tomé, A. J. Silvestre, A. M. Silva et al., A. meso-Aryl-Substituted Expanded Porphyrins, Hexaphyrins were discovered two decades ago independently by Cavaleiro and Osuka: (a), vol.123, pp.7190-7191, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01439814

Y. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo et al., Combined Experimental and Theoretical Investigations on Optical Activities of Möbius Aromatic and Möbius Antiaromatic Hexaphyrin Phosphorus Complexes, Angew. Chem., Int. Ed, vol.47, pp.4241-4248, 2008.

C. Wolf, Dynamic Stereochemistry of Chiral Compounds: Principles and Applications, 2007.

B. L. Feringa, L. Zhang, V. Marcos, and D. A. Leigh, The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture), Proc. Natl. Acad. Sci, vol.56, pp.9397-9404, 2017.

J. Clayden, (b) Clayden, J. Transmission of Stereochemical Information over Nanometre Distances in Chemical Reactions, Molecular Interactions -Bringing Chemistry to Life, vol.38, pp.817-829, 2007.

S. F. Pizzolato, P. ?tacko, J. C. Kistemaker, T. Van-leeuwen, E. Otten et al., Central-to-Helical-to-Axial-toCentral Transfer of Chirality with a Photoresponsive Catalyst, J. Am. Chem. Soc, vol.140, pp.17278-17289, 2018.

A. Martinez, V. Robert, H. Gornitzka, J. Dutasta, D. M. Carminati et al., Controlling Helical Chirality in Atrane Structures: Solvent-Dependent Chirality Sense in Hemicryptophane-Oxidovanadium(V) Complexes, Chem. Eur. J, vol.16, pp.13599-13612, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01116840

M. Ménand, M. Sollogoub, B. Boitrel, S. Le-gac, S. Hexaphyrin-;-le-gac et al., Cyclodextrin-Sandwiched Hexaphyrin Hybrids: Side-to-Side Cavity Coupling Switched by a Temperature-and Redox-Responsive Central Device, Cyclodextrin Hybrids: A Nest for Switchable Aromaticity, Asymmetric Confinement, and Isomorphic Fluxionality, vol.55, pp.5804-5812, 2016.

, See reference 20b and the corresponding SI for a definition of the R p and S p stereodescriptors

M. Marcos, E. Anglada, J. M. Torrent-sucarrat, M. Marcos, E. Anglada et al., Theoretical Study of the Switching between Hückel and Möbius Topologies for Expanded Porphyrins, J. Phys. Chem. C, vol.116, pp.5036-5046, 2012.

K. S. Kim, Z. S. Yoon, A. B. Ricks, J. Shin, S. Mori et al., Conformational Changes of meso-Aryl Substituted Expanded Porphyrins upon Protonation: Effects on Photophysical Properties and Aromaticity, J. Phys. Chem. A, vol.113, pp.4498-4506, 2009.

, Calculated for a triply-linked [26]HCD hybrid, see reference 20a

A. J. Pearce and P. Sinaÿ, Diisobutylaluminum-Promoted Regioselective De-O-benzylation of Perbenzylated Cyclodextrins: A Powerful New Strategy for the Preparation of Selectively Modified Cyclodextrins, Angew. Chem. Int. Ed, vol.39, pp.3610-3612, 2000.

T. Lecourt, A. Herault, A. J. Pearce, M. Sollogoub, and P. Sinaÿ, Triisobutylaluminium and Diisobutylaluminium Hydride as Molecular Scalpels: The Regioselective Stripping of Perbenzylated Sugars and Cyclodextrins, Chem. Eur. J, vol.10, pp.2960-2971, 2004.

J. Hierso, Indirect Nonbonded Nuclear Spin-Spin Coupling: A Guide for the Recognition and Understanding of, Chem. Rev, vol.114, pp.4838-4867, 2014.

, Considering a transiting C 2 -symmetric rectangular conformation, the same (degenerate) Möbius isomers are obtained from twisting one or the other identical (C 2 -symmetrically related

, These long-side patterns are also supported by the 19 F NMR spectra lacking the through-space 19 F-19 F coupling constant, and by the distribution of the para-fluorine atoms resonating at very similar chemical shifts for R [26]1 (? = -153.12 and -153.21 ppm, long side/long side), vs

S. Cho, Z. S. Yoon, K. S. Kim, M. Yoon, D. Cho et al., Defining Spectroscopic Features of Heteroannulenic Antiaromatic Porphyrinoids, J. Phys. Chem. Lett, vol.1, pp.895-900, 2010.

T. Yoneda, T. Kim, T. Soya, S. Neya, J. Oh et al., Conformational Fixation of a Rectangular Antiaromatic [28]Hexaphyrin Using Rationally Installed Peripheral Straps, Chem. Asian J, vol.22, pp.256-260, 2016.

, the P/M absolute configuration of the separated enantiomers of a Pd(II) complex of a Möbius [28]hexaphyrin were misassigned

, Whereas quantitative metalation was achieved with Zn(OTf) 2 /L 2 , metalation did not go to completion with Zn(OAc) 2, even with a large excess and prolonged heating

S. Mori, S. Shimizu, R. Taniguchi, and A. Osuka, For instance, a pronounced inward orientation of the meso-aromatic substituent cis to the N atom of the twisted pyrrole has been observed with group ten metal complexes of Möbius [28]hexaphyrins, exhibiting a significant localized twist distribution due to a constraining square planar NNNC coordination sphere; see, Inorg. Chem, vol.44, pp.4127-4129, 2005.

, Sharp signals were observed at 243 K, see the SI

, ZnL n ' oriented inward, short distances between e.g. the Me groups of the bound L 2 and the linker ethylenic and aromatic protons (< 5 Å) would lead to significant NOE correlations. The only NOE correlations observed with the bound L 2 indicate spatial proximity between its 'in' Me group and outer ?-pyrrolic protons

, Considering that the detection limit of the 1 H NMR experiment is ca

K. Mikami, M. Shimizu, H. Zhang, and B. E. Maryanoff, Acyclic Stereocontrol Between Remote Atom Centers via Intramolecular and Intermolecular Stereo-Communication, Tetrahedron, vol.57, pp.2917-2951, 2001.

, For a recent example of remote control of planar chirality in a dynamic system, see: Mamiya, F.; Ousaka, N.; Yashima, E. Remote Control of the Planar Chirality in Peptide-Bound Metallomacrocycles and Dynamic-to-Static Planar Chirality Control Triggered by Solvent-Induced 3 10 -to-?-Helix Transitions, Angew. Chem. Int. Ed, vol.54, pp.14442-14446, 2015.