A. Staubitz, A. P. Robertson, and I. Manners, Ammonia-borane and related compounds as dihydrogen sources, Chem. Rev, vol.110, pp.4079-4124, 2010.

T. Hügle, M. F. Kühnel, and D. Lentz, Hydrazine borane: a promising hydrogen storage material, J. Am. Chem. Soc, vol.131, pp.7444-7446, 2009.

S. K. Singh, X. Zhang, and Q. Xu, Roomtemperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc, vol.131, pp.9894-9895, 2009.

A. Staubitz, M. E. Sloan, A. P. Robertson, A. Friedrich, S. Schneider et al., Schmedt auf der Günne, J.; Manners, I. Catalytic dehydrocoupling/dehydrogenation of N-methylamineborane and ammonia-borane: synthesis and characterization of high molecular weight polyaminoboranes, J. Am. Chem. Soc, vol.132, pp.13332-13345, 2010.

E. L. Lippert and W. Lipscomb, The structure of H 3 NBH 3, J. Am. Chem. Soc, vol.78, pp.503-504, 1956.

E. W. Hughes, The crystal structure of ammoniaborane, H 3 NBH 3, J. Am. Chem. Soc, vol.78, pp.502-503, 1956.

S. G. Shore and R. W. Parry, The crystalline compound ammonia-borane, 1 H 3 NBH 3, J. Am. Chem. Soc, vol.77, pp.6084-6085, 1955.

F. H. Stephens, V. Pons, and R. T. Baker, Ammoniaborane: the hydrogen source par excellence? Dalton Trans, pp.2613-2626, 2007.

T. Umegaki, J. Yan, X. Zhang, H. Shioyama, N. Kuriyama et al., Boron-and nitrogen-based chemical hydrogen storage materials, Int. J. Hydrogen Energy, vol.34, pp.2303-2311, 2009.

L. Thorne, R. Suenram, and F. Lovas, Microwave spectrum, torsional barrier, and structure of BH 3 NH 3, J. Chem. Phys, vol.78, pp.167-171, 1983.

R. J. Keaton, J. M. Blacquiere, and R. T. Baker, Base metal catalyzed dehydrogenation of ammonia? borane for chemical hydrogen storage, J. Am. Chem. Soc, vol.129, pp.1844-1845, 2007.

M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey, K. I. Goldberg et al., Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids, J. Am. Chem. Soc, vol.128, pp.7748-7749, 2006.

B. L. Conley, D. Guess, and T. J. Williams, A robust, air-stable, reusable ruthenium catalyst for dehydrogenation of ammonia borane, J. Am. Chem. Soc, issue.36, pp.14212-14215, 2011.

D. W. Himmelberger, C. W. Yoon, M. E. Bluhm, P. J. Carroll, and L. G. Sneddon, Base-promoted ammonia borane hydrogen-release, J. Am. Chem. Soc, vol.131, pp.14101-14110, 2009.

M. Hu, R. Geanangel, and W. Wendlandt, The thermal decomposition of ammonia borane, Therm. Acta, vol.23, pp.249-255, 1978.

F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-rößler, and G. Leitner, Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods, Therm. Act, vol.391, pp.159-168, 2002.

M. Bowden, T. Autrey, I. Brown, and M. Ryan, The thermal decomposition of ammonia borane: A potential hydrogen storage material, Curr. Appl. Phys, vol.8, pp.498-500, 2008.

T. Richardson, S. De-gala, R. H. Crabtree, and P. E. Siegbahn, Unconventional hydrogen bonds: Intermolecular BH....HN interactions, J. Am. Chem. Soc, vol.117, pp.12875-12876, 1995.

X. Chen, X. Bao, J. Zhao, and S. G. Shore, Experimental and computational Study of the formation mechanism of the diammoniate of diborane: the role of dihydrogen bonds, J. Am. Chem. Soc, vol.133, pp.14172-14175, 2011.

W. T. Klooster, T. F. Koetzle, P. E. Siegbahn, T. B. Richardson, and R. H. Crabtree, Study of the N?H···H?B dihydrogen bond including the crystal structure of BH 3 NH 3 by neutron diffraction, J. Am. Chem. Soc, vol.121, pp.6337-6343, 1999.

G. C. Welch, D. W. Stephan, R. Custelcean, and J. E. Jackson, Topochemical control of covalent bond formation by dihydrogen bonding, J. Am. Chem. Soc, vol.129, pp.12935-12941, 1998.

C. Sun, X. Yao, A. Du, L. Li, S. Smith et al., Computational study of methyl derivatives of ammonia borane for hydrogen storage, Phys. Chem. Chem. Phys, vol.10, pp.6104-6106, 2008.

M. E. Bowden, I. W. Brown, G. J. Gainsford, and H. Wong, Structure and thermal decomposition of methylamine borane, Inorg. Chim. Act, vol.361, pp.2147-2153, 2008.

D. J. Grant, M. H. Matus, K. D. Anderson, D. M. Camaioni, S. R. Neufeldt et al., Thermochemistry for the dehydrogenation of methylsubstituted ammonia borane compounds, J. Phys. Chem. A, vol.113, pp.6121-6132, 2009.

M. T. Nguyen, V. S. Nguyen, M. H. Matus, G. Gopakumar, and D. A. Dixon, Molecular mechanism for H 2 release from BH 3 NH 3 , including the catalytic role of the lewis acid BH 3, J. Phys. Chem. A, vol.111, pp.679-690, 2007.

H. Umeyama and K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. 3. Energy and charge decomposition analyses for several strong complexes: carbon monoxide-borane, ammonia-borane, methylamine-borane, trimethylamine-borane, and ammonia-boron trifluoride, J. Am. Chem. Soc, vol.98, pp.7208-7220, 1976.

A. Haaland, Covalent versus dative bonds to main group metals, a useful distinction, Ang. Chem. Int. Ed, vol.28, pp.992-1007, 1989.

R. Mccoy and S. Bauer, Energetics of the Boranes. I. The heats of reaction of diborane with the methylamines, and of tetramethyldiborane with trimethylamine; the dissociation energy of diborane1, J. Am. Chem. Soc, vol.78, pp.2061-2065, 1956.

S. Aldridge, A. J. Downs, C. Y. Tang, S. Parsons, M. C. Clarke et al., Structures and aggregation of the methylamine?borane molecules, Me n H 3? n N·BH 3 (n= 1? 3), studied by X-ray diffraction, gas-phase electron diffraction, and quantum chemical calculations, J. Am. Chem. Soc, vol.131, pp.2231-2243, 2009.

R. Hargittai and D. W. , In Stereochemical Applications of gas-phase electron diffraction, 1988.

K. Iijima and S. Shibata, Molecular structure and internal rotation of trimethylamine-boron trifluoride. A combination of electron diffraction and spectroscopic data, Bull. Chem. Soc. Japan, vol.52, pp.711-715, 1979.

K. Iijima and S. Shibata, Molecular structures of complexes of trimethylamine with boron trichloride and boron tribromide as determined by gas electron diffraction, Bull. Chem. Soc. Japan, vol.53, pp.1908-1913, 1980.

K. Iijima and S. Shibata, The molecular structure of trimethylamine-boron triiodide as studied by gas electron diffraction, Bull. Chem. Soc. Japan, vol.56, pp.1891-1895, 1983.

K. Iijima, N. Adachi, and S. Shibata, Molecular structure of trimethylamine-borane as studied from gas electron diffraction and spectroscopic data, Bull. Chem. Soc. Japan, vol.57, pp.3269-3273, 1984.

P. Cassoux, R. L. Kuczkowski, P. S. Bryan, and R. C. Taylor, Microwave spectra of trimethylamine-borane

, Boron-nitrogen distance and molecular dipole moment, Inorg. Chem, vol.14, pp.126-129, 1975.

M. Hargittai and I. Hargittai, Electron diffraction investigation of the molecular structures of two trimethylamine-boron halide adducts in the vapour phase, J. Mol. Struct, vol.39, pp.79-89, 1977.

P. H. Clippard, J. C. Hanson, and R. C. Taylor, Crystal and molecular structures of three trimethylamine-boron halide adducts: (CH 3 ) 3 NBCl 3 , (CH 3 ) 3 NBBr 3 , and (CH 3 ) 3 NBI 3, J. Cryst. Mol. Struct, vol.1, pp.363-371, 1971.

J. R. Durig, Y. S. Li, and J. D. Odom, Microwave spectrum, structure and dipole moment of trimethylamine-borane, J. Mol. Struct, vol.16, pp.443-450, 1973.

P. D. Mccaffrey, R. J. Mawhorter, A. R. Turner, P. T. Brain, and D. W. Rankin, Accurate equilibrium structures obtained from gas-phase electron diffraction data: Sodium chloride, J. Phys. Chem. A, vol.111, pp.6103-6114, 2007.

H. Ringertz, The crystal and molecular structure of aziridine borane, Acta Chem. Scand, vol.23, p.137443, 1969.

J. A. Kroll and D. D. Shillady, Electronic structure of aziridine-borane, J. Am. Chem. Soc, vol.95, pp.1422-1425, 1973.

A. Konovalov, H. Møllendal, and J. Guillemin, Microwave spectrum, structure, barrier to internal rotation, and dipole moment of the aziridine-borane complex (C 2 H 5 N?BH 3 ), J. Phys. Chem. A, vol.113, pp.8337-8342, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00405512

J. L. Abboud, B. Németh, J. C. Guillemin, P. Burk, A. Adamson et al., Dihydrogen generation from amine/boranes: synthesis, FT-ICR, and computational studies, Chem. Eur. J, vol.18, pp.3981-3991, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00904683

T. Banu, K. Sen, D. Ghosh, T. Debnath, and A. Das,

K. , Cyclic amine-borane adducts as chemical hydrogen storage systems: a computational analysis, RSC Adv, vol.4, pp.1352-1361, 2014.

K. Sen, T. Banu, T. Debnath, D. Ghosh, and A. K. Das, Catalytic role of borane and alane in hydrogen release from cyclic amine adducts C n H 2n+1 N·XH 3 [X = B, Al; n = 2-5]: a theoretical interpretation

A. J. Blake, P. T. Brain, H. Mcnab, J. Miller, C. A. Morrison et al., Structure analysis restrained by ab initio calculations: The molecular structure of 2,5-dichloropyrimidine in gaseous and crystalline phases, J. Phys. Chem, vol.100, issue.10, pp.4589-4596, 1996.

N. W. Mitzel and D. W. Rankin, SARACEN-molecular structures from theory and experiment: The best of both worlds, Dalton Trans, issue.19, pp.3650-3662, 2003.

D. Feller, K. A. Peterson, and J. Grant-hill, On the effectiveness of CCSD (T) complete basis set extrapolations for atomization energies, J. Chem. Phys, p.44102, 2011.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys, vol.90, pp.1007-1023, 1989.

S. J. Atkinson, R. Noble-eddy, and S. L. Masters, Gas-phase structures of ketene and acetic acid from acetic anhydride using very-high-temperature gas electron diffraction, J. Phys. Chem. A, vol.120, pp.2041-2048, 2016.

V. Sipachev, Calculation of shrinkage corrections in harmonic approximation, J. Mol. Struct.: THEOCHEM, vol.121, pp.143-151, 1985.

V. A. Sipachev, Anharmonic corrections to structural experiment data, Struct. Chem, vol.11, pp.167-172, 2000.

D. A. Wann, R. J. Less, F. Rataboul, P. D. Mccaffrey, A. M. Reilly et al., Accurate gas-phase experimental structures of octasilsesquioxanes (Si 8 O 12 X 8 ; X= H, Me), Organomet, vol.27, pp.4183-4187, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02117661

V. S. Mastryukov, O. V. Dorofeeva, L. V. Vilkov, and I. Hargittai, Electron diffraction determination of the vapour phase molecular structure of azetidine, p.3

, J. Mol. Struct, vol.34, pp.99-112, 1976.

J. Catalán, O. Mo, and M. Yanez, Theoretical study of the structure of azetidine, J. Mol. Struct, vol.43, pp.251-257, 1978.

D. Cremer, O. V. Dorofeeva, and V. S. Mastryukov, Theoretical determination of molecular structure and conformation: Part X. Geometry and puckering potential of azetidine,(CH 2 ) 3 NH, combination of electron diffraction and ab initio studies, J. Mol. Struct, vol.75, pp.225-240, 1981.

H. Günther, G. Schrem, and H. Oberhammer, The gas-phase structure of azetidine: Microwave spectroscopy, and electron diffraction and normal coordinate analysis, J. Mol. Spec, vol.104, pp.152-164, 1984.

R. Dutler, A. Rauk, and T. S. Sorensen, A dynamic proton NMR and ab initio MO investigation of the barrier to pyramidal inversion in azetidine, J. Am. Chem. Soc, vol.109, pp.3224-3228, 1987.

R. Dutler, A. Rauk, and R. Shaw, Scaled ab initio force field and vibrational spectra of azetidine, J. Phys. Chem, vol.94, pp.118-124, 1990.

V. S. Mastryukov and J. E. Boggs, Structure and conformation of some saturated four-membered rings, CH 2 CH 2 CH 2 X, J. Mol. Struct.: THEOCHEM, vol.338, pp.235-248, 1995.

J. C. López, S. Blanco, A. Lesarri, and J. L. Alonso, Internal dynamics in azetidine: A microwave and ab initio study, J. Chem. Phys, vol.114, pp.2237-2250, 2001.

D. Cremer and J. Pople, General definition of ring puckering coordinates, J. Am. Chem. Soc, vol.97, pp.1354-1358, 1975.

H. Fujiwara, T. Egawa, H. Takeuchi, and S. Konaka, Molecular structure of N-chloroazetidine studied by gas electron diffraction combined with microwave spectroscopy, J. Mol. Struct, vol.301, pp.113-123, 1993.

V. S. Nguyen, M. H. Matus, V. T. Ngan, M. T. Nguyen, and D. A. Dixon, Theoretical study of the hydrogen release from ammonia alane and the catalytic effect of alane, J. Phys. Chem. C, vol.112, pp.5662-5671, 2008.

V. S. Nguyen, D. Majumdar, J. Leszczynski, and M. T. Nguyen, Hydrogen release from systems containing phosphine, borane, alane and galane: A mechanistic study, Chem. Phys. Lett, vol.584, pp.30-36, 2013.

D. A. Dixon and M. Gutowski, ] salt for chemical hydrogen storage systems from ab initio electronic structure theory, J. Phys. Chem. A, vol.109, pp.5129-5135, 2005.

B. Németh, B. Khater, J. Guillemin, and T. Veszprémi, Differences between amine-and phosphine-boranes: synthesis, photoelectron spectroscopy, and quantum chemical study of the cyclopropylic derivatives, Inorg. Chem, vol.49, pp.4854-4864, 2010.

M. H. Matus, K. D. Anderson, D. M. Camaioni, S. T. Autrey, and D. A. Dixon, Reliable predictions of the thermochemistry of boron? nitrogen hydrogen storage compounds: B x N x H y , x= 2, 3, J. Phys. Chem. A, vol.111, pp.4411-4421, 2007.

C. D. Rankine, J. P. Nunes, T. Lock-feixas, S. Young, and D. A. Wann, The structure of 4-(Dimethylamino) benzonitrile using gas electron diffraction: a new lease of life for the only gas electron diffractometer in the UK, J. Phys. Chem. A, vol.122, pp.5656-5665, 2018.

J. P. Nunes, Developments towards timeresolved electron diffraction: roadmap to "molecular movies, 2017.

S. L. Hinchley, H. E. Robertson, K. B. Borisenko, A. R. Turner, B. F. Johnston et al., , vol.12

J. N. Jones and A. H. Cowley, The molecular structure of tetra-tert-butyldiphosphine: an extremely distorted, sterically crowded molecule, Dalton Trans, issue.16, pp.2469-2476, 2004.

A. W. Ross, M. Fink, and R. Hilderbrandt,

A. J. Wilson, . M. Ed, G. W. Trucks, H. B. Schlegel, G. E. Scuseria et al., , 1992.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma et al., NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations, Comp. Phys. Comm, vol.181, pp.275-280, 1990.

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theo. Chem. Acc, vol.120, pp.215-241, 2008.

W. J. Hehre, R. Ditchfield, and J. A. Pople, Selfconsistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys, vol.56, pp.2257-2261, 1972.

R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys, vol.72, pp.650-654, 1980.

M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon et al., Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, J. Chem. Phys, vol.77, pp.3265-3269, 1982.

D. E. Woon, J. Dunning, and T. H. , Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon, J. Chem. Phys, vol.103, pp.4572-4585, 1995.

V. Sipachev, Local centrifugal distortions caused by internal motions of molecules, J. Mol. Struct, vol.567, pp.67-72, 2001.

C. Peng and H. B. Schlegel, Combining synchronous transit and quasi-newton methods to find transition states, Israel J. Chem, vol.33, pp.5523-5527, 1990.

L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation, J. Chem. Phys, vol.106, pp.1063-1079, 1997.