X. Desert, J. Carpentier, and E. Kirillov, Quantification of active sites in single-site group 4 metal olefin polymerization catalysis, Coord. Chem. Rev, vol.386, pp.50-68, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02051155

L. Resconi and C. Fritze, Polypropylene Handbook, pp.107-147, 2005.

W. Kaminsky, . Discovery, and . Of,

G. Fink and H. H. Brintzinger, Polymerization Reactions in MetalCatalysis in Industrial Organic Processes, Methylaluminoxane as Cocatalyst for Olefin Polymerization. Macromolecules, vol.45, pp.218-254, 2006.

M. Bochmann, The Chemistry of Catalyst Activation: The Case of Group 4

, Kinetic and mechanistic aspects of metallocene polymerisation catalysts, Organometallics, vol.29, pp.4711-4740, 2010.

J. Chem-;-pedeutour, K. Radhakrishnan, and A. Deffieux, Reactivity of Metallocene Catalysts for Olefin Polymerization: Influence of Activator Nature and Structure, Macromol. Rapid Commun, vol.689, pp.1095-1123, 2001.

E. Y. Chen, .. Marks, and T. J. ,

. Activators, Evaluation of propagation rate constants for isotactic and atactic polymerization of propene with MgCl2-supported catalysts, Activation Processes, and Structure?Activity Relationships, vol.100, pp.503-507, 1989.

V. Busico, R. Cipullo, and V. Esposito, Stopped-flow polymerizations of ethene and propene in the presence of the catalyst system rac-Me2Si(2-methyl-4-phenyl-1-indenyl)2ZrCl2/methylaluminoxane, Macromol. Rapid Commun, vol.20, pp.116-121, 1999.

R. Cipullo, S. Mellino, V. Busico, R. Cipullo, P. Melone et al., Identification and Count of the Active Sites in Olefin Polymerization Catalysis by Oxygen Quench, Macromol. Chem Phys, vol.215, pp.12304-12311, 2014.

Z. Liu, E. Somsook, and C. R. Landis,

H. Liu, Z. Somsook, E. White, C. B. Rosaaen, K. A. Landis et al., Scheme for Active-Site Counts in Metallocene-Catalyzed Alkene Polymerization, J. Am. Chem. Soc, vol.123, pp.1710-1711, 2001.

C. R. Landis, K. A. Rosaaen, D. R. Sillars, and J. Uddin, Heavy-Atom Kinetic Isotope Effects, Cocatalysts, and the Propagation Transition State for Polymerization of 1

C. R. Landis and M. D. Christianson, Metallocene-catalyzed alkene polymerization and the observation of Zr-allyls, Hexene Using the rac-(C2H4, vol.124, pp.15349-15354, 2002.

M. D. Christianson, E. H. Tan, and C. R. Landis, Stopped-Flow NMR: Determining the Kinetics of [rac-(C2H4(1-indenyl)2)ZrMe][MeB(C6F5)3]-Catalyzed Polymerization of 1-Hexene by Direct Observation, J. Am. Chem. Soc, vol.132, pp.11461-11463, 2010.

B. M. Moscato, B. Zhu, C. R. Landis, and E. Gpc, Analysis of Labeled Poly(1-Hexene): Rapid Determination of Initiated Site Counts during Catalytic Alkene Polymerization Reactions, J. Am. Chem. Soc, vol.132, pp.14352-14354, 2010.

P. Christianson, M. D. Landis, and C. R. , Direct kinetic analysis of catalytic alkene polymerization by stopped-flow NMR, Polymer Preprints, vol.52, issue.1, pp.242-243, 2011.

B. M. Moscato, B. Zhu, and C. R. Landis, Mechanistic Investigations into the Behavior of a Labeled Zirconocene Polymerization Catalyst, Organometallics, vol.32, pp.2097-2107, 2012.

D. L. Nelsen, B. J. Anding, J. L. Sawicki, M. D. Christianson, D. J. Arriola et al., Chromophore Quench-Labeling: An Approach to Quantifying Catalyst Speciation As Demonstrated for (EBI)ZrMe2/B(C6F5)3-Catalyzed Polymerization of 1

E. S. Hexene-;-cueny, H. C. Johnson, B. J. Anding, C. R. Landis, F. Song et al., Activator effects in metallocene-based alkene polymerisations: unexpectedly strong dependence of catalyst activity on trityl concentration, J. Mol. Catal. A: Chem, vol.6, pp.21-28, 2003.

F. Song, R. D. Cannon, M. Bochmann, F. Ghiotto, C. Pateraki et al., Rapid evaluation of catalysts and MAO activators by kinetics: what controls polymer molecular weight and activity in metallocene/MAO catalysts, Dalton Trans, pp.9040-9048, 2004.

K. A. Novstrup, N. E. Travia, G. A. Medvedev, C. Stanciu, J. M. Switzer et al., Mechanistic Detail Revealed via Comprehensive Kinetic Modeling of [rac-C2H4(1-indenyl)2ZrMe2]-Catalyzed 1-Hexene Polymerization, J. Am. Chem. Soc, vol.132, pp.558-566, 2010.

C. H. Chen, W. C. Shih, and C. Hilty, Situ Determination of Tacticity, Deactivation, and Kinetics in

, Catalyzed Polymerization of 1-Hexene Using 13 C Hyperpolarized NMR, J. Am. Chem

. Soc, , vol.137, pp.6965-6971, 2015.

Y. Guo, F. He, Z. Zhang, A. Khan, Z. Fu et al., Influence of trimethylaluminum on kinetics of rac-Et(Ind)2ZrCl2/aluminoxane catalyzed ethylene polymerization, J. Organomet. Chem, vol.808, pp.109-116, 2016.

W. Spaleck, F. Kuber, A. Winter, J. Rohrmann, B. Bachmann et al., The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalyst, Organometallics, pp.954-963, 1994.

E. Kirillov, N. Marquet, A. Razavi, V. Belia, F. Hampel et al., New C1-Symmetric Ph2C-Bridged Multisubstituted ansaZirconocenes for Highly Isospecific Propylene Polymerization: Synthetic Approach via Activated Fulvenes, -R 3 -5-Me-C5H2)}MCl2: Synthesis, Structure, Stereochemistry, and Use in Highly Isoselective Propylene Polymerization Organometallics, vol.29, pp.263-272, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00576887

M. Bader, N. Marquet, E. Kirillov, T. Roisnel, A. Razavi et al., Old and New C1-Symmetric Group 4 Metallocenes {
URL : https://hal.archives-ouvertes.fr/hal-00813140

, C5H2)}ZrCl2: From Highly Isotactic Polypropylenes to Vinyl End-Capped

;. Isotactic-enriched-oligomers, L. Castro, E. Kirillov, O. Miserque, A. Welle et al., Are Solvent and Dispersion Effects Crucial in Olefin Polymerization DFT Calculations? Some Insights from Propylene Coordination and Insertion Reactions with Group 3 and, Organometallics, vol.32, pp.8375-8387, 2013.

. Metallocenes, , vol.5, pp.416-425, 2015.

I. Kim, J. Zhou, and H. Chung, Higher ?-Olefin Polymerizations Catalyzed by racMe2Si

V. Grumel, R. Brull, H. Pasch, H. G. Raubenheimer, R. Sanderson et al., Homopolymerization of Higher 1-Olefins with Metallocene/MAO Catalysts, 1687?1697. (b), vol.38, pp.480-487, 2000.

N. Kawahara, J. Saito, S. Matsuo, H. Kaneko, T. Matsugi et al., Study on Unsaturated Structures of Polyhexene, poly(4-methylpentene) and poly(3-methylpentene) Prepared with Metallocene Catalysts, Polymer, vol.48, 2007.

P. Brant, P. Jiang, J. Lovell, D. Crowther, I. E. Nifant'ev et al., Catalytic Behavior of Heterocenes Activated by TIBA and MMAO Under a Low Al/Zr Ratios in 1-Octene Polymerization, 2836?2839. (e), vol.35, pp.12-24, 2016.

B. Richter, A. Meetsma, B. Hessen, J. H. Teuben, B. Richter et al., Structural Characterization of a Cationic Zirconocene Olefin Polymerization Catalyst with its Methylated Boralumoxane Counterion, Angew. Chem. Int. Ed, vol.41, pp.2166-2169, 2002.

R. Tanaka, T. Hirose, Y. Nakayama, and T. Shiono, The preparation of boron-containing aluminoxanes and their application as cocatalysts in the polymerization of olefins, Polym. J, vol.48, pp.67-71, 2016.

D. E. Babushkin, V. N. Panchenko, and H. H. Brintzinger, Zirconium Allyl Complexes as Participants in Zirconocene-Catalyzed ?-Olefin Polymerizations, Angew. Chem. Int

V. N. Ed-;-panchenko, D. E. Babushkin, and H. H. Brintzinger, Zirconium-Allyl Complexes as Resting States in Zirconocene-Catalyzed ?-Olefin Polymerization, 53, 9645?9649. (b), pp.249-253, 2014.

M. Vatamanu, Observation of zirconium allyl species formed during zirconocenecatalyzed propene polymerization and mechanistic insights, J. Catal, vol.323, pp.112-120, 2015.

P. Corradini, V. Busico, and R. Cipullo, Hydrooligomerization of propene: a "fingerprint" of a Ziegler-Natta catalyst, 2. A reinterpretation of results for isospecific

. Macromol and . Chem,

V. Busico, R. Cipullo, and P. Corradini, Preliminary results of propene hydrooligomerization in the presence of the homogeneous isospecific catalyst system rac-(EBI)ZrCl2/MAO, Macromol. Chem, pp.97-103

V. Busico, R. Cipullo, R. Pellecchia, G. Talarico, A. Razavi et al., Beware of Trimethylaluminum!. Macromolecules, vol.42, pp.1789-1791, 2009.

G. Theurkauff, M. Bader, N. Marquet, A. Bondon, T. Roisnel et al., Discrete Ionic Complexes of Highly Isoselective Zirconocenes. Solution Dynamics, Trimethylaluminum Adducts, and Implications in Propylene Polymerization, Organometallics, vol.35, pp.258-276, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263043

Y. Yu, V. Busico, P. H. Budzelaar, A. Vittoria, and R. Cipullo, Of Poisons and Antidotes in Polypropylene Catalysis, Angew. Chem. Int. Ed, vol.55, pp.8590-8594, 2016.

, The possible concomitant hydrogenation of 1-hexene can also account for the observed lower polymer yield, see: Cui, X.; Burgess, K. Catalytic Homogeneous Asymmetric Hydrogenations of Largely Unfunctionalized Alkenes, Chem. Rev, vol.105, pp.3272-3296, 2005.

V. Busico, R. Cipullo, G. Talarico, V. Busico, R. Cipullo et al., Highly Regioselective Transition-MetalCatalyzed 1-Alkene Polymerizations: A Simple Method for the Detection and Precise Determination of Regioirregular Monomer Enchainments, Macromolecules, vol.31, pp.2387-2390, 1998.

, Copolymerization as a Tool for Investigating Catalyst Regioselectivity. 1. Theory and Calibration, Macromolecules, vol.35, pp.1537-1542, 2002.

L. Resconi, I. Camurati, and O. Sudmeijer, Chain transfer reactions in propylene polymerization with zirconocene catalysts, Topics in Catalysis, vol.7, 1999.

, {SBI}-2 showed only a minute resonance assigned to terminal vinylidene end-groups (? 111.6 ppm; Fig. S22), which result from regular ?-H elimination reaction; all other endgroups were saturated (alkyls). Also, only saturated end-groups were observed in poly

A. Razavi and . Int, Appl, 1999.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences

D. A. Mcgraw-hill-;-skoog and J. J. Leary, Principles of Instrumental Analysis, pp.13-14, 1969.

G. Natta and I. Pasquon, The Kinetics of the Stereospecific Polymerization of ?-Olefins

. Adv, , pp.1-66, 1959.

A. Constantinides and N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, 1999.