S. Singh, K. K. Gaikwad, and Y. Suk, Phase change materials for advanced cooling packaging, Environ. Chem. Lett, vol.16, pp.845-859, 2018.

L. F. Cabeza, A. Castell, C. Barreneche, A. De-gracia, and A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew. Sustain. Energy Rev, vol.15, pp.1675-1695, 2011.

P. Zhang, Z. W. Ma, and R. Z. Wang, An overview of phase change material slurries: MPCS and CHS, Renew. Sustain. Energy Rev, vol.14, pp.598-614, 2010.

L. Huang, M. Petermann, and C. Doetsch, Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications, vol.34, pp.1145-1155, 2009.

L. Huang and M. Petermann, An experimental study on rheological behaviors of paraffin/water phase change emulsion, Int. J. Heat Mass Transf, vol.83, pp.479-486, 2015.

Z. Youssef, A. Delahaye, L. Huang, F. Trinquet, L. Fournaison et al., State of the art on phase change material slurries, Energy Convers. Manag, vol.65, pp.120-132, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02597981

W. Tesfai, P. Singh, Y. Shatilla, M. Z. Iqbal, and A. A. Abdala, Rheology and microstructure of dilute graphene oxide suspension, J. Nanoparticle Res, vol.15, p.3334, 1989.

M. Delgado, A. Lázaro, J. Mazo, and B. Zalba, Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications, Renew. Sustain. Energy Rev, vol.16, pp.253-273, 2012.

L. Huang, C. Doetsch, and C. Pollerberg, Low temperature paraffin phase change emulsions, Int. J. Refrig, vol.33, pp.1583-1589, 2010.

H. Inaba, S. Morita, and S. Nozu, Fundamental study of cold heat-storage system of phase-change-type emulsion having cold latent heat dispersion material, Trans. JSME, vol.59, pp.2882-2889, 1993.

H. Inaba and S. Morita, Flow and cold heat-storage characteristics of phase-change emulsion in a coiled doubletube heat exchanger, J. Heat Transf, vol.117, pp.440-446, 2016.

L. Royon, Physical properties and thermorheological behaviour of a dispersio having cold latent heat-storage material, Energy Convers. Manag, vol.39, pp.1529-1535, 1998.

F. Wang, J. Liu, X. Fang, and Z. Zhang, Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance, Sol. Energy Mater. Sol. Cells, vol.147, pp.101-107, 2016.

F. Agresti, L. Fedele, S. Rossi, D. Cabaleiro, S. Bobbo et al., Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications, Sol. Energy Mater Sol. Cells, vol.194, pp.268-275, 2019.

W. Lu and S. A. Tassou, Experimental study of the thermal characteristics of phase change slurries for active cooling, Appl. Energy, vol.91, pp.366-374, 2012.

F. Wang, X. Fang, and Z. Zhang, Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage, Sol. Energy Mater. Sol. Cells, vol.176, pp.381-390, 2018.

F. Wang, Z. Ling, X. Fang, and Z. Zhang, Optimization on the photo-thermal conversion performance of graphite nanoplatelets decorated phase change material emulsions, Sol. Energy Mater. Sol. Cells, vol.186, pp.340-348, 2018.

Y. Wang, Z. Chen, and X. Ling, A molecular dynamics study of nano-encapsulated phase change material slurry, Appl. Therm. Eng, vol.98, pp.835-840, 2016.

M. Kong, J. L. Alvarado, W. Terrell, and C. Thies, Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube, Int. J. Heat Mass Transf, vol.101, pp.901-914, 2016.

K. Dutkowski and J. J. Fiuk, Experimental research of viscosity of microencapsulated PCM slurry at the phase change temperature, Int. J. Heat Mass Transf, vol.134, pp.1209-1217, 2019.

K. Dutkowski and J. J. Fiuk, Experimental investigation of the effects of mass fraction and temperature on the viscosity of microencapsulated PCM slurry, Int. J. Heat Mass Transf, vol.126, pp.390-399, 2018.

A. J. Frank, TA Instruments Normal Stresses in Shear Flow, 2019.

C. W. Macosko and . Rheology, Principles, Measurements and Applications, 1994.

T. Chatterjee, A. K. Van-dyk, V. V. Ginzburg, and A. I. Nakatani, Formulation-controlled positive and negative first normal stress differences in waterborne hydrophobically modified ethylene oxide urethane (HEUR)-latex suspensions, ACS Macro Lett, vol.6, pp.716-720, 2017.

B. K. Aral and D. M. Kalyon, Viscoelastic material functions of noncolloidal suspensions with spherical particles, J. Rheol, vol.41, pp.599-620, 1997.

T. Zhang, Q. Lu, Y. Lü, and G. Wu, Determination of critical micelle concentration of sodium dodecyl sulfate in butyl acrylate emulsions, Polym. Bull, vol.72, pp.2215-2225, 2015.

M. E. Helgeson, Colloidal behavior of nanoemulsions: Interactions, structure and rheology, Curr. Opin. Colloid Interface Sci, vol.25, pp.39-50, 2016.

J. M. Gutiérrez, I. Solè, A. Maestro, C. González, and C. Solans, Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system, Langmuir, vol.22, pp.8326-8332, 2006.

T. Tadros, P. Izquierdo, J. Esquena, and C. Solans, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci, pp.303-318, 2004.

P. Estellé, D. Cabaleiro, G. ?y?a, L. Lugo, and S. M. Murshed, Current trends in surface tension and wetting behavior of nanofluids, Renew. Sustain. Energy Rev, vol.94, pp.931-944, 2018.

B. J. Adzima and S. S. Velankar, Pressure drops for droplet flows in microfluidic channels, J. Micromech. Microeng, vol.16, pp.1504-1510, 2006.

D. Cabaleiro, F. Agresti, S. Barison, M. A. Marcos, J. I. Prado et al., Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications, Appl. Therm. Eng, vol.159, 2019.

L. Fedele, L. Colla, S. Bobbo, S. Barison, and F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale Res. Lett, vol.6, 2011.

S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, Int. J. Therm. Sci, vol.71, pp.111-117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821792

R. Gómez-villarejo, T. Aguilar, S. Hamze, P. Estellé, and J. Navas, Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties, J. Mol. Liq, vol.277, pp.93-103, 2019.

M. Hernaiz, V. Alonso, P. Estellé, Z. Wu, B. Sundén et al., The contact angle of nanofluids as thermophysical property, J. Colloid Interface Sci, vol.547, pp.393-406, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02112880

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, International tables of surface tension of water with air, J. Phy. Chem. Ref. Data, vol.12, pp.817-820, 1983.

G. ?y?a, J. Fal, and P. Estellé, Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN-EG) nanofluids with various size of particles, Int. J. Heat Mass Transf, vol.113, pp.1189-1199, 2017.

E. W. Lemmon, M. L. Huber, and M. O. Mclinden, Version 9.0. Physical and Chemical Properties, Reference Fluid Thermodynamic and Transport Properties (REFPROP), vol.23, p.24, 2010.

G. Ferrer, S. Gschwander, A. Solé, C. Barreneche, A. I. Fernández et al., Empirical equation to estimate viscosity of paraffin, J. Energy Storage, vol.11, pp.154-161, 2017.

V. Mikkola, S. Puupponen, K. Saari, T. Ala-nissila, and A. Seppälä, Thermal properties and convective heat transfer of phase changing paraffin nanofluids, Int. J. Therm. Sci, vol.117, pp.163-171, 2017.

S. M. Murshed and P. Estellé, A state of the art review on viscosity of nanofluids, Renew. Sustain. Energy Rev, vol.76, pp.1134-1152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01500498

J. W. Bullard, A. T. Pauli, E. J. Garboczi, and N. S. Martys, A comparison of viscosity-concentration relationships for emulsions, J. Colloid Interface Sci, vol.330, pp.186-193, 2009.

R. Pal and E. Rhodes, Viscosity/concentration relationships for emulsions viscosity, J. Rheol, vol.33, pp.1021-1045, 1989.

G. I. Taylor, The viscosity of a fluid containing small drops of another fluid, Philos. Trans. R. Soc. London Ser. A, vol.138, pp.41-48, 1932.

A. Einstein, A new determination of molecular dimension, Ann. Phys, vol.19, pp.289-305, 1906.

J. Bicerano, J. F. Douglas, and D. A. Brune, Polymer model for the viscosity of particle dispersions model for the viscosity of particle dispersions, J. Macromol. Sci. Part C, vol.39, pp.561-642, 1999.

R. Pal, Modeling the viscosity of concentrated nanoemulsions and nanosuspensions, vol.1, 2016.

R. Pal, A new model for the viscosity of asphaltene solutions, Can. J. Chem. Eng, vol.93, pp.747-755, 2015.

R. Pal, A new linear viscoelastic model for emulsions and suspensions, Polym. Eng. Sci, vol.48, pp.1250-1253, 2008.

T. B. Lewis, L. E. Nielsen, and M. Company, Dynamic mechanical properties of particulate-filled composites, J. Appl. Polym. Sci, vol.14, pp.1449-1471, 1970.

I. M. Krieger and T. J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol, vol.3, pp.137-152, 1959.

H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys, vol.20, 1952.

R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys, vol.1952, pp.267-269

M. Chiesa, J. Garg, Y. T. Kang, and G. Chen, Thermal conductivity and viscosity of water-in-oil nanoemulsions, Colloids Surfaces A Physicochem. Eng. Asp, vol.326, p.3334, 2008.

N. Xiang, Y. Yuan, L. Sun, X. Cao, and J. Zhao, Simultaneous decrease in supercooling and enhancement of thermal conductivity of paraffin emulsion in medium temperature range with graphene as additive, Thermochim. Acta, vol.664, pp.16-25, 2018.

A. Safari, R. Saidur, F. A. Sulaiman, Y. Xu, and J. Dong, A review on supercooling of phase change materials in thermal energy storage systems, Renew. Sustain. Energy Rev, vol.70, pp.905-919, 2017.

S. Zeppieri, J. Rodríguez, and A. L. López-de-ramos, Interfacial tension of alkane + water systems, J. Chem. Eng. Data, vol.46, pp.1086-1088, 2001.

A. Goebel and K. Lunkenheimer, Interfacial tension of the water/ n-alkane interface, Langmuir, vol.13, pp.369-372, 2002.

S. G. Oh and D. O. Shah, Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate system, J. Phys. Chem, vol.97, pp.284-286, 1993.

V. B. Fainerman, S. V. Lylyk, E. V. Aksenenko, J. T. Petkov, J. Yorke et al., Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions, Colloids Surfaces A Physicochem. Eng. Asp, vol.354, pp.8-15, 2010.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI