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Abstract: Over the past 25 years, magnetic actinide complexes have been the object of considerable
attention, not only at the experimental level, but also at the theoretical one. Such systems are of
great interest, owing to the well-known larger spin–orbit coupling for actinide ions, and could
exhibit slow relaxation of the magnetization, arising from a large anisotropy barrier, and magnetic
hysteresis of purely molecular origin below a given blocking temperature. Furthermore, more diffuse
5f orbitals than lanthanide 4f ones (more covalency) could lead to stronger magnetic super-exchange.
On the other hand, the extraordinary experimental challenges of actinide complexes chemistry,
because of their rarity and toxicity, afford computational chemistry a particularly valuable role.
However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is
required, but such an approach is computationally demanding for polymetallic systems—notably for
actinide ones—and usually simplified models are considered instead of the actual systems. Thus,
Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange
coupling and to explore the electronic structure and magnetic properties of actinide-containing
molecules, especially when the considered systems are very large. In this paper, relevant achievements
regarding DFT investigations of the magnetic properties of actinide complexes are surveyed,
with particular emphasis on some representative examples that illustrate the subject, including
actinides in Single Molecular Magnets (SMMs) and systems featuring metal-metal super-exchange
coupling interactions. Examples are drawn from studies that are either entirely computational or are
combined experimental/computational investigations in which the latter play a significant role.
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1. Introduction

During recent decades, the magnetochemistry of actinide complexes has gained an important
impetus, not only at the experimental level, but also at the theoretical one [1–8]. Indeed, since the
first observation early in the 1990s of the antiferromagnetic (AF) coupling between uranium(V)
centers in the para-imido [(MeC5H4)3U]2(µ-1,4-N2C6H4) complex by Rosen et al. [9], this class
of binuclear actinide systems has been arousing interest [10–52]. Moreover, the discovery in
2009 of the slow magnetic relaxation for the mononuclear complex U(Ph2BPz2)3 [53], which is a
signature of a single-molecule magnet (SMM) behavior, has motivated more research, even though
lanthanide SMMs have been described in the literature for a longer time [54,55]. A growing number
of uranium-containing systems [56–69]—mononuclear as well as binuclear species—have been
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synthesized to develop SMMs; the results have been the subject of recent reviews [70–75]. Such
systems are of great interest, owing to the well-known larger spin–orbit coupling for actinide
than for lanthanide ions [72], and the more diffuse 5f orbitals (5f covalency) [63,76–78] than the
lanthanide 4f ones, which could lead to strong magnetic super-exchange [53]. Therefore, these unique
features of actinides relatively to transition metals and lanthanides open the way to the design
of new actinide-based SMMs with high blocking temperatures [71,72,75]. Moreover, over the last
twenty years, much effort has been devoted to investigating the magnetic properties of actinide
complexes by quantum chemical methods [62–65,67,70–76,79–81]. Indeed, investigating the electronic
structure of actinide complexes is essential to understanding their magnetic behavior [1,2,71–73].
However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required,
as stated by several authors [63,64,82,83], but such an approach is computationally demanding
(vide infra) for polymetallic systems, notably for actinide ones, and usually simplified models are
computed instead of the actual systems [63,64]. Thus, Density Functional Theory (DFT) appears as
an alternative tool to compute magnetic exchange coupling and to explore the electronic structure
and magnetic properties of actinide-containing molecules, especially when the considered systems
are very large [6,8,21,37,60,79,80,84,85]. Indeed, DFT emerged in the early 2000s as a powerful
technique, particularly when used in combination with the hybrid B3LYP functional [86,87] and
the Broken-Symmetry (BS) Noodleman’s approach [88,89], for satisfactory simulations of magnetic
properties. This is true not only in the case of d-transition metal systems [82,83,90–104], but also
for actinide-containing molecules [105–107]. It is worth noting that actinide-based SMMs are
multiconfigurational systems, and the use of the monodeterminantal approach with DFT is a subject of
debate [63,108–110].

We present here a review of relevant achievements regarding DFT investigations of the magnetic
properties of actinide complexes. This review will also deal with representative examples that
illustrate the subject, including actinides in SMMs and systems featuring metal-metal exchange
coupling interactions. We focus on studies that are either entirely computational or are combined
experimental/computational investigations in which the latter play a significant role.

2. Survey of Molecules Potentially Exhibiting Magnetic Behavior

2.1. Magnetic Coupling Interactions

Actinide complexes exhibiting magnetic exchange properties are rarely mentioned in the
literature [1,2], relatively to the rich d-transition metal magnetochemistry. Most documented cases
involve diuranium(V) systems [8,23–27,37,49–51,106,111–116], and only a few studies of magnetic
coupling in diuranium(III) and (IV) complexes or mixed uranium(IV)–transition metal have been
reported [46,52,105,107,117–122]. Among them, remarkable examples of unusual U(V)–U(V) coupling
involving a pentavalent bis(imido) uranium dimer [106] and within diuranium(V) dioxo diamond
cores [46,49,114–116,123–126] have been reported, which can exhibit Néel temperatures of up to 70 and
even 110 K [23,24,27,114,115,127].

Magnetic coupling constants J were estimated in the 1990s for UV/UV dinuclear complexes such
as the AF [(MeC5H4)3U]2(µ-1,4-N2C6H4) species (J = −19 cm−1) [1,2,9], and later for ferromagnetic
UIV/UIV coupling in U2Co pyrazolate (cyclam)Co[(µ-Cl)U(Me2Pz)4]2 system (15 cm−1 ≥ J ≥ 48
cm−1) [21] and in the arene-bridged uranium(IV) complex U[HC(SiMe2Ar)2(SiMe2-µ-N)](µ-Ar)U(TsXy)
(J = 20 cm−1) [38]. As expected for the more ionic uranium(IV) species, reports of UIV/UIV

couplings are rather scarce, being limited to few examples [33,105,107,122,128] discussing couplings
which are mediated by either chalcogen bridges or aromatic spacers. Moreover, examples of
uranium(IV)–copper(II) and uranium(IV)–nickel(II) couplings have been reported [43–45,117,118]. It is
noteworthy that a successful strategy to promote interactions between paramagnetic actinide ions has
been the use of covalently-linked bridging ligands [1,2]. Thus, a great variety of spacer ligands bearing
two functionalized actinide centers have been tested, showing significant metal-metal communication
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and magnetic interaction. For example, the linear bis(imido) (imido = 1,4-diimidobenzene) covalent
linkage was the first one used in the diuranium(V) para- and meta-bridged complexes (Figure 1) [9].Magnetochemistry 2018, 4, x FOR PEER REVIEW  3 of 31 
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magnetic behavior. In their study, bis(ketimide) [(C5Me4Et)2(Cl)An]2(µ-{N=CMe-(C6H4)-MeC=N}) 
binuclear AnIV/AnIV (Th, U) complexes62 were synthesized (Figure 2). The authors reported that, 
although evidence for magnetic coupling between metal centers in the bimetallic UIV/UIV (5f2–5f2) 
complex is ambiguous, the complex displays appreciable electronic communication between the 
metal centers through the π system of the dianionic bis(ketimide) dianionic bridging ligand [128]. 
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Figure 2. Structure of the bis(ketimide)-bridged [(C5Me4Et)2(Cl)An]2(µ-{N=CMe-(C6H4)-MeC=N}) 
binuclear AnIV/AnIV (Th, U) complexes (ketimide = 1,4-phenylenediketimide) [128]. 

Another kind of bridging-spacer system includes inverted-sandwich systems, which contain two 
uranium atoms bridged by a cyclic aromatic hydrocarbon ligand e.g., benzene, toluene (Figure 3) [9], 
cycloheptatrienyl (η7-C7H7) or naphthalene and cyclooctatetraene (η8-C8H8), as recently reviewed 
[127]. Indeed, Cummins and Coll. [10] reported in the 2000s the X-ray structure of the first inverted-
sandwich structures of different arene spacers, namely the (µ-η6:η6-C7H8)[U(N[R]Ar)2]2 complex (R = 
C(CH3)3, Ar = 3,5-C6H3Me2) (Figure 3), in which a toluene molecule bridges two uranium bis-amido 
fragments in a symmetrical η6:η6 mode, involving covalent delta bonds. These aromatic ligands, which 
could exhibit rich redox chemistry for a range of reducible substrates, have been proposed to promote 
intra-molecular electronic and magnetic communications between uranium centers [65]. This class of 
inverted-sandwich structures was enriched in 2011 by the first arene-bridged diuranium(III) [{U-
(BIPMTMSH)(I)}2(μ-η6:η6-C6H5Me)] system exhibiting SMM behavior [60].  
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The formulation of the metal oxidation state in this species could either be uranium(II)/neutral 
arene, uranium(III)/dianionic arene, or uranium(IV)/tetraanionic arene, but spectroscopic 
characterization and theoretical computations favor uranium(III)/dianionic arene formulation [127]. 
Cummins and Coll. [11] have extended this inverted-sandwich series of complexes to the 

Figure 1. The diuranium(V) imido complex which exhibits AF U···U coupling [9].

More recently, reports of Kiplinger’s group [106,112,128] on ketimide actinide-containing
assemblies, indicated that the 1,4-phenylenediketimide ligand could lead to diverse and interesting
magnetic behavior. In their study, bis(ketimide) [(C5Me4Et)2(Cl)An]2(µ-{N=CMe-(C6H4)-MeC=N})
binuclear AnIV/AnIV (Th, U) complexes62 were synthesized (Figure 2). The authors reported that,
although evidence for magnetic coupling between metal centers in the bimetallic UIV/UIV (5f2–5f2)
complex is ambiguous, the complex displays appreciable electronic communication between the metal
centers through the π system of the dianionic bis(ketimide) dianionic bridging ligand [128].
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binuclear AnIV/AnIV (Th, U) complexes (ketimide = 1,4-phenylenediketimide) [128].

Another kind of bridging-spacer system includes inverted-sandwich systems, which contain
two uranium atoms bridged by a cyclic aromatic hydrocarbon ligand e.g., benzene, toluene
(Figure 3) [9], cycloheptatrienyl (η7-C7H7) or naphthalene and cyclooctatetraene (η8-C8H8), as recently
reviewed [127]. Indeed, Cummins and Coll. [10] reported in the 2000s the X-ray structure of the
first inverted-sandwich structures of different arene spacers, namely the (µ-η6:η6-C7H8)[U(N[R]Ar)2]2

complex (R = C(CH3)3, Ar = 3,5-C6H3Me2) (Figure 3), in which a toluene molecule bridges two
uranium bis-amido fragments in a symmetrical η6:η6 mode, involving covalent delta bonds. These
aromatic ligands, which could exhibit rich redox chemistry for a range of reducible substrates, have
been proposed to promote intra-molecular electronic and magnetic communications between uranium
centers [65]. This class of inverted-sandwich structures was enriched in 2011 by the first arene-bridged
diuranium(III) [{U-(BIPMTMSH)(I)}2(µ-η6:η6-C6H5Me)] system exhibiting SMM behavior [60].
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The formulation of the metal oxidation state in this species could either be uranium(II)/neutral
arene, uranium(III)/dianionic arene, or uranium(IV)/tetraanionic arene, but spectroscopic
characterization and theoretical computations favor uranium(III)/dianionic arene formulation [127].
Cummins and Coll. [11] have extended this inverted-sandwich series of complexes to the
naphthalene-bridged M2(µ-η6,η6-C10H8)[U(NC[tBu]Mes)3]2 (M = K, Na; Mes = 2,4,6-C6H2Me3) and
its cyclooctatetraene (µ-η8,η8-C8H8)U2(NC[tBu]Mes)6 congener. As reported by these authors, the
performed DFT computations on the [(µ-η8,η8-C10H8)U2(NCH2)6]2- and (µ-η8,η8-C8H8)U2(NCH2)6

models in their quintet state (S = 2) are consistent with the tetravalent UIV (5f2) oxidation
state of the metal centers [11]. The C−C bond lengths of the bridging arene were found
to be slightly lengthened compared to those of free toluene, and with the help of theoretical
calculations, suggested δ-back-bonding between uranium and the arene ring. In 2004, William J.
Evans and Coll. [19] reported the structure, reactivity and DFT analysis of the two arene-bridged
diuranium [(Mes(tBu)N)2U]2(µ-η6:η6-C7H8) and [(η5-C5Me5)2U]2(µ-η6:η6-C6H6) systems. The latter
species was described as two U(III) covalently bonded metals to the arene ligand via δ’symmetry
bonding molecular orbital (MO). Ephritikhine and Coll. [119,120] had previously reported a
unique bridged-cycloheptatrienyl diuranium [U(BH4)2(OC4H8)5][(µ-η7,η7-C7H7)[U(BH4)3]2]− anionic
complex. It was suggested that the (C7H7)3− ring should be described as an aromatic planar group and
the metals as UIV ions, with four highest δ’symmetry bonding MOs. Such covalently bridged systems
by δ-bonding should promote U···U electronic and magnetic communications [1,2,35–38,60,65,72,73].
Although to our knowledge no systematic theoretical studies have been reported on the magnetic
behavior of the latter complexes, it seems likely that δ-bonding, which dominates the bonding in
the inverse sandwich unit, could favor metal-metal exchange coupling as stated by recent reports
evidencing arene-bridged diuranium SMM behavior [60,72,73]. Indeed, in their continual efforts to
develop new synthetic routes to magnetic actinide systems, S.T. Liddle’s group recently (2017) extended
their investigations to crystal field and magnetic interactions in diuranium [{U(TrenTIPS)}2(µ-E)] (E = S,
Se, Te) bridged-chalcogenide complexes with UIV–E–UIV cores (Figure 4) [37], which exhibit linearly
U–E–U linked cores.
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Plots of the magnetic susceptibility vs. temperature of these linkages present shoulders that could
be interpreted as evidence of uranium–uranium magnetic exchange. However, a detailed study using
CASSCF computations of their electronic structures revealed that the magnetic properties of these
systems can be simply correlated to single-ion crystal field (CF) effects which vary as the nature of the
chalcogen varies.

As reviewed recently [71,72], a successful route to super-exchange effects in actinide-containing
multinuclear species is through cation–cation interactions (CCI) [23–33,46–51,59,61,69,114–116,123],
mostly between uranyl(V) UO2

+ of actinyl units. This linkage forms an oxo-bridge between metal
centers affording a great number of oxo-bridged systems exhibiting significant coupling between UV

centers [27,49], mixed UV/transition metal [28–32,111] or lanthanide centers [47,112,123], with the
largest actinide-based multinuclear complex affording the unique structure of a wheel-shaped cluster
{[UO2(salen)]2Mn(Py)3}6 (Py = pyridine) which is assembled through UO2

+ and MnII interactions [29].
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Additionally, CCIs were observed between NpIV/NpV ions in neptunyl complexes [75]. Beside the
great number of synthesized CCI systems, few theoretical studies of their magnetic properties have
been carried out [1–4,7,8,37,60,63,64,71,72,80,81].

2.2. SMM Behavior

The first actinide system found to display slow magnetic relaxation was the mononuclear
uranium(III) [U{Ph2B(N2C3H3)2}3] complex exhibiting clear SMM behavior (Figure 5) [53]. Since
then, a wide range of SMMs based on uranium(III, V) have been reported [56–59,62,127,129–131],
which are mainly supported by pyrazolylborate ligands as reviewed recently [69–72,127].
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In 2012, the uranium SMM chemistry was extended to the pentavalent species of U(V) ions,
with the report of the nanostructure wheel-shaped [{(UO2[(CH2NCHC6H4-2-O)2])2(Mn[Py]3)}6]
complex [61]. As reported, significant magnetic interactions between the uranyl(V) and manganese(II)
ions were studied by susceptibility measurements. In 2013, the synthesis of a terminal uranium(V)
mono-oxo complex U(TrenTIPS)(=O) (Figure 6) supported by the sterically demanding ligand
N(CH2CH2NSiPri

3)3 (TrenTIPS) ligand was reported by S.T. Liddle and Coll., [127] revealing the
first example of an uranium(V) monometallic SMM.
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3. DFT Investigations of Actinide Complexes Magnetism

3.1. Theoretical Approaches for Computing Exchange Coupling Constants

Magnetic properties of species bearing unpaired electrons are driven by the manifold of states of
different spin multiplicities they exhibit, especially if the latter energies are close [82,83]. The calculation
of magnetic properties of molecular systems, which necessitates a high accuracy of the computed
energies, needs to properly take into account both static and dynamic electron correlation. Static
correlation is generally well described by multiconfigurational (MC) treatments like CASSCF, whereas
dynamical correlation can be recovered with MR-CI techniques or by perturbation using CASPT2
technique, for instance [132–139]. However, CASSCF computations are drastically limited by the size of
the active space, so that such high-level computations can only be applied to relatively small molecules
or models [82]. DFT could offer the opportunity to estimate the magnetic properties of large systems at
a low computational cost [80–83,90]. The exact wavefunctions which are eigenfunctions of the square
spin operator Ŝ2 with eigenvalues S(S + 1) can be written as expansion of Slater determinants each
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of them being eigenfunction of the spin component Ŝz [83]. Such exact descriptions of the electronic
states of a molecule cannot be obtained using DFT, which is a ground state and single determinant
theory; therefore, the exact determination of the electronic states energies cannot be obtained.

Regarding magnetic exchange, the used spin Hamiltonian is the Heisenberg–Dirac–van Vleck
(HDvV) one, Ĥ = −ΣJijŜi·Ŝj where Ŝi, Ŝj are the spin operators associated to the magnetic centers i, j
and Jij the coupling constants between these centers [82,83,90,91].

Experimentally, the coupling constants Jij are derived from the magnetic susceptibility
measurements by fitting the experimental curve. This approach was successfully used by Rinehart
and Coll.1 to model the susceptibility of the diuranium(V) bis(imido)-bridged complex. As shown in
Figure 7, the best fit of the susceptibility’s curve provides an exchange constant of J = −19 cm−1 [1,2].
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Estimating the coupling constant using DFT is made possible using the Broken Symmetry (BS)
approach proposed first by Noodleman et al. [88,89], which have been nicely reviewed by Bencini [82]
and Neese [83]. In the case of a dinuclear system, it consists of evaluating the magnetic coupling
constant Jij from the energy difference between two main configurations, i.e., the high-spin state (HS)
of spin Smax = 1 (in the case of a 5f1/5f1 configuration) which is generally well described by a single
determinant and the BS state determinant which is eigenfunction of Ŝz with eigenvalue Ms = 0, but
not of Ŝ2. In the latter binuclear case, the HS determinant bears the two highest singly occupied
molecular orbitals (SOMOs) with spins α/α, whereas the BS starting determinant, before running the
SCF process, is simply produced from the HS determinant by a spinflip of the electron leading to the
α/β configuration. Different formulas for the calculation of the coupling constant from the EHS and
EBS energies have been proposed;42 among them, the Yamaguchi et al. formula [140–142]:

J12 = (EBS − EHS)/(<S2>HS − <S2>BS) (1)

where <S2>HS and <S2>BS are respectively the mean values of the squared spin operator for the HS
and BS states.

The validity of the BS approach has been discussed [143], and the reliability and accuracy
of the obtained results have been largely investigated [82,83,93–98,133–139]. It has been shown
that computations of the magnetic coupling constants at the B3LYP level [86,87] generally lead
to satisfying results and good agreement either with high level post-HF computations or with
experimental measurements [89]. For instance, D. Gatteschi and Coll. [144] reported DFT calculations
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in 2009 considering a mixed {3d–4f} [Cu(II)Gd(III)] complex [L1CuGd(O2CCF3)3(C2H5OH)2]
(L1 = N,N′-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato), with the aim of assessing
a suitable DFT functional to understand the mechanism of magnetic coupling and to develop
magneto-structural correlations. Several GGA, meta-GGA and hybrid functional calculations with
different percentages of HF exchange have been performed. The coupling J constant using the Ĥ =
JŜGd·ŜCu spin Hamiltonian, was extracted from the difference energy between the HS state (ST = 4)
and the BS one, using the following equation:

J =
EBS − EHS

2SGdSCu
(2)

The DFT/BS model provides ferromagnetic J constant value of −5.8 cm−1 (in the used model,
negative J value indicates a ferromagnetic character), which is in excellent agreement with the
experimental value of −4.42 cm−1, the B3LYP functional being recommended [144].

3.2. Magnetic Exchange Coupling in Actinide Bimetallic Systems

The DFT/BS approach for computing and modeling the exchange coupling interactions faces
situations in actinide systems which are different from the lanthanide ones because of their potential
for more covalent metal-ligand interactions especially for uranium [8,21,71–73,75]. Even so, numerous
DFT/BS studies aiming at rationalizing the sign and strength of the exchange coupling for various bridged
diuranium by drawing magneto-structural correlations have been carried out [105–110,145–147].

The discovery of the first AF coupled 5f1/5f1 bis(imido) diuranium(V) complex [({MeC5H4}3U)2

(µ-1,4-N2C6H4)] [9], rationalized later [1,127], was undoubtedly a milestone in the field of actinide
molecules likely to exhibit magnetic exchange coupling [1–3,6]. One of the first magnetic systems which
was theoretically investigated by DFT/BS computations, is the bis(imido) pentavalent diuranium(V)
[U(NtBu)2(I)(tBu2bpy)]2 complex reported by Kiplinger’s group in 2009 [106]. This system exhibits
significant AF coupling between the two metallic 5f1/5f1 spin centers, as shown by the magnetic molar
χ versus T, through CCI between [U(NR)2]+ moieties similar to that observed in poly-uranyl [UO2]+

systems [23–32,46–51,59,61,69,114–116]. The authors carried out B3LYP computations, employing the
Stuttgart RSC 1997 ECP basis set for uranium. The geometries of the HS and BS states were optimized
with no symmetry constraints. DFT calculations show that the axial U=N double bond (2.073 Å)
consists of one σ and one π bonds, whereas the bridging equatorial U−N bond (2.384 Å) is a single
bond, as depicted in Figure 8.
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Figure 8. Structure of the U2N2 core [106]. 

Their computations predicted that the BS state is lower in energy than the triplet HS state, 
leading to an AF exchange coupling constant J of −12 cm−1, which is in good agreement with the 
experimental fitting of the susceptibility measurements. As reported [106], the weak AF coupling 
between the two 5f1 centers is due not only to the long U-N distance, but also to the fact that half 
orbitals consist of antisymmetric combinations which place a node along the U-N bond. Theoretical 
insights into the AF interaction between metal centers were assessed using the [{U(NtBu)2(I)2(bpy)}2] 
model to investigate molecular orbital interactions in the U2N2 core. As reported by the authors [106], 
the B3LYP natural orbital analysis shows that the two unpaired SOMO and SOMO-1 are localized on the 
uranium centers corresponding to the 5f1ϕ/5f1ϕ configuration. 

Figure 8. Structure of the U2N2 core [106].

Their computations predicted that the BS state is lower in energy than the triplet HS state, leading
to an AF exchange coupling constant J of −12 cm−1, which is in good agreement with the experimental
fitting of the susceptibility measurements. As reported [106], the weak AF coupling between the two
5f1 centers is due not only to the long U-N distance, but also to the fact that half orbitals consist of



Magnetochemistry 2019, 5, 15 8 of 31

antisymmetric combinations which place a node along the U-N bond. Theoretical insights into the AF
interaction between metal centers were assessed using the [{U(NtBu)2(I)2(bpy)}2] model to investigate
molecular orbital interactions in the U2N2 core. As reported by the authors [106], the B3LYP natural
orbital analysis shows that the two unpaired SOMO and SOMO-1 are localized on the uranium centers
corresponding to the 5f1

ϕ/5f1
ϕ configuration.

One year later, Newell et al. [107] reported in 2010 on the para and meta dinuclear
tetravalent UIV/UIV [(NN′3)2U2(DEB)] and trinuclear [(NN′3)3U3(TEB)] complex (NN′3 = [N(CH2CH2

NSitBuMe2)3]) (Figure 9) containing aromatic arylacetylide ligands i.e., diethynylbenzene (DEB) and
triethynylbenzene (TEB) ligands as bridging-spacers for two or three metallic 5f2/5f2 and 5f2/5f2/5f2

spin centers.
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As reported by the authors, the experimental investigations of their magnetic properties show
that the di- and tri-nuclear compounds appear to display weak magnetic communication between
the uranium centers. This communication is modeled by fitting the direct current (DC) magnetic
susceptibility data, using the spin Hamiltonian Ĥ = −2J Ŝz1·Ŝz2, which leads to a weak ferromagnetic
coupling constant i.e., J = 4.76, 2.75, and 1.11 cm−1, respectively for meta-, para-diuranium(IV) and
triuranium(IV) complexes. As reported in the same study [107], geometry and nuclearity appear to
have an effect on the strength of the coupling between the U(IV) centers. Turning back to the theoretical
analysis, geometries of the considered model complexes were optimized using B3LYP computations.
In these models, the bulky SitBuMe2 substituting groups in the NN′3 ligand have been replaced by H
atoms and scalar relativistic effects only included in the used uranium effective core potential. For the
simplified models derived from the meta- and para-bridged dinuclear species, the BS approach led to
computed J values equal to 1.6 and −0.1 cm−1 for the meta- and para-bridged complexes, respectively,
in fair agreement with experimental trends. As expected, all complexes show only small net spin
density (Figure 10) on the ethynylbenzene ligands. As stated by the authors, the computed HS/BS spin
densities mapping for meta (a/b) and para (c/d) isomers, both show that the spin density is mostly
localized on the two UIV centers, with no contribution from the bridged-DEB ligand, explaining the
weak ferromagnetic and AF character of the meta and para species, respectively [107]. The authors
concluded that despite the structural difference with the actual meta and para DEB-bridged dinuclear
systems, the result shows that coupling in the single wavenumber range is not unexpected.
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Subsequent DFT/BS investigations were carried out in 2012 by R. Arratia-Pérez and Coll. [105] on
the magnetic properties of the bis(dicyclooctatetraenyl) diuranium(IV) [U(η8-C8H7)2]2 model system
(Figure 11). The authors, who used scalar relativistic computations with the Zeroth Order Regular
Approximation (ZORA) and the PBE GGA functional [148,149] in combination with the BS approach,
found a strong ferromagnetic coupling between the uranium centers bearing the 5f2-5f2 orbitals,
the U···U distance in the (COT)2UIV···UIV(COT)2 complex being equal to 5.320 Å.
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Returning to the 5f1–5f1 bis(imido) diuranium(V) systems [9], the ZORA/B3LYP
computations of the coupling constant [146] properly reproduce the AF character of the para
[({MeC5H4}3U)2(µ-1,4-N2C6H4)] diuranium(V) complex and the ferromagnetic one of its meta isomer
[({MeC5H4}3U)2(µ-1,3-N2C6H4)] (Figure 12).
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permission from [146], Elsevier, 2012).

The spin-density plots of the HS/BS states (Figure 13) illustrate that the spin polarization effect
is mainly responsible for the observed magnetic character. Considering the para-U2imido isomer,
alternation of the signs of the atomic spin populations along the path is obtained for the BS state and
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not for the HS one. In contrast, for the meta-isomer, alternation of these signs is obtained for the HS
state, which is lower in energy than BS one, ensuring the ferromagnetic character of the complex.
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The topology of the path linking the two magnetic of para-U2imido and meta-U2imido complexes
plays a crucial role for the electronic communication between the U(V) centers. Furthermore, from
the MO point of view, the AF interaction between the two uranium(V) ions mediated by the aromatic
imido bridge is mainly due to the effective π-overlap between 5f1 orbitals and the nitrogen orbitals of
the bridging ligand groups.

As mentioned, the Kiplinger’s group [128] reported in 2008 the occurrence of a significant
electronic communication between the UIV/UIV (5f2/5f2) centers within the bis(ketimide) binuclear
[(C5Me4Et)2(Cl)An]2(µ-{N=CMe-(C6H4)-MeC=N}) AnIV/AnIV (Th, U) complexes. However, the
magnetic character of the coupling between the metal centers could not be shown unambiguously.
Computationally, the exchange coupling constant has be estimated considering the simplified
[(C5H5)2(Cl)An]2(µ-ketimide) model (An/An = UIV/UIV and UIV/ThIV), where C5Me4Et is replaced
by the Cp = C5H5 ring (Figure 14) [147]. Using ZORA/B3LYP computations, the BS ground state of
these UIV/UIV 5f2–5f2 complexes has been found of lower energy than the quintet HS state, indicating
a weak AF character (estimated coupling constant |J| < 5 cm−1) which has not yet been confirmed
experimentally to our knowledge.
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Figure 14. Structures of the bis(ketimide) diuranium(IV) complexes (reprinted with permission
from [147], Springer-Verlag, 2012).

The magnetic exchange coupling has been rationalized considering spin density distributions
(Figure 15). As obtained for the previous bis(imido) UV/UV (5f1/5f1) system [146], the AF coupling
appears through the alternating signs of the atomic spin populations along the path linking the
two magnetic metal centers 5f2–5f2 in the BS state, the AF character being mainly explained by
spin polarization.
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The effect of the replacement of one paramagnetic metal U(5f2) by the diamagnetic Th(5f0) one
in the UIV−(µ-ketimide)−ThIV hypothetical complex drastically affects the spin polarization effect;
the spin densities tend to zero beyond the first neighbors of the paramagnetic center. No magnetic
exchange interaction occurs in such a system.

C. C. Cummins and Coll. [15,16] reported in 2013 on the electronic structure and magnetic
properties analyses of the arene-bridged UIII/UIII dimer [U2(N[tBu]Ar)4(µ-toluene)] (Ar = 3,5-C6H3Me2)
complex (Figure 16).Magnetochemistry 2018, 4, x FOR PEER REVIEW  11 of 31 
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Computationally, DFT geometry optimizations were performed using the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [148,149] and the dispersion corrected B-97D
functional [150] considering a model where the large sized 1-adamantyl and 3,5-C6H3Me2 groups
were replaced by tbutyl and phenyl moieties, respectively. With reference to the results of DFT and
CASSCF/CASPT2 calculations relativistic effects being included with the Douglas-Kroll-Hess (DKH)
Hamiltonian (spin-orbit not included), all possible spin states of the model compounds, including
singlet, triplet, quintet, and septet spin states, were explored. The DFT electronic structure analysis
showed that the highest four SOMOs are 5f orbitals of the two uranium centers, followed energetically
by two covalent δMOs, as presented in Figure 17. These latter MOs corresponding to the U-arene-U
bonding contain contributions from uranium 5f orbitals overlapping with π antibonding orbitals of
the tolyl group.
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quintet state. (a) SOMO−4 and (b) SOMO−5 (reprinted with permission from [16], American Chemical
Society, 2013).

The ground state at the CASPT2 level is the singlet; however, the triplet and quintet are
respectively 0.7 and 2.5 kcal/mol higher in energy than the singlet state, whereas the septet is
much higher, at 34.5 kcal/mol. As reported by the authors [16], solid-state magnetic susceptibility
measurements of the dinuclear system showed complicated features. Indeed, although paramagnetic
behavior is observed over the temperature intervals 5–300 K, the 1/χ versus T graph showed minimum
values between 95 and 125 K, which is characteristic of a transition to AF state. However, the optical and
magnetic properties of UIII-(µ-toluene)-UIII were difficult to relate to reported examples of mononuclear
uranium organometallic complexes. The authors did not estimate the coupling constants.

As indicated above, remarkable classes of diuranium(V) bridged-oxo complexes exhibiting
UVO2

+···UVO2
+ CCIs and strong AF exchange coupling were reported by various authors [23–32,46–51,

61,69,114–116], motivating theoretical investigations [7,8,63–65,71,72,74,75,79]. Among them, strongly
coupled binuclear complexes [UO2{N(SiR3)2}2(py)2] forming a butterfly-shaped Si–OUO2UO–Si
uranium(V)-oxo motif (Figure 18) have been synthesized (2012), X-ray characterized and their
electronic and magnetic properties investigated with the support of DFT computations [49].
A variable-temperature measurement of susceptibility shows a clear signature of AF coupling between
the 5f1–5f1 centers.
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The geometries of the 5f1–5f1 structures were optimized in the gas phase using B3LYP calculations,
considering the ferromagnetic triplet (fαfα), the BS (fαfβ) and the spin restricted singlet (fαβ) states.
A striking structural feature of the U2O2 core is its C2v-symmetrical diamond shape and an average
U–O distance of 2.094 Å, with a very short U···U separation of 3.3557(5) Å. As reported by the
authors using B3LYP calculations [49], the BS state was calculated to be more stable than the triplet
and restricted singlet states by 1.4 and 42.7 kcal/mol, respectively, which is in agreement with the
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observed AF character of the complex. The U···U separation was calculated to be equal to 3.366 and
3.379 Å in the BS and triplet states, respectively, within 0.01 Å deviations from the experimental values.
NBO analysis of the bonding in the U2O2 core for both states, based on the calculated Mayer and
Wiberg bond orders, reveals formally U–O single and partially double-bond character, which is in
agreement with the structural features. The MO analysis shows that the two α and β components
of HOMO-27 and HOMO-28, obtained with the B3LYP functional for the BS state, are related to the
σ and π bonding interactions, respectively, within the U2O2 core. The π-type orbitals, which are
dominated by 2p-contributions from the oxo-bridged atoms, appear to stabilize the diamond U2O2

core. The B3LYP calculated spin density in the AF BS state shows the fαfβ configuration with electrons
of different spins localized on each uranium atom.

As reported in the same study [49], the calculated U···U separation of 3.366 Å is much shorter
than twice the covalent radius of the uranium atom (3.92 Å), which may indicate some metal-metal
bonding interaction, as predicted by theory [145,151–154]. However, the structural analogy with
MoV(µ-O)2MoV complexes which exhibit single Mo–Mo bonds was faced to the paramagnetic state of
the UV(µ-O)2UV complex, and no reported examples exist of molecular bonds between two f-block
ions in such structures. The authors conclude that the extremely short U···U separation exhibited by
the diuranium(V) oxo-bridged system indicates strong electronic communication between the two
5f1 centers. However, it was postulated that the geometry of the oxo-group interaction within the
diamond-shaped U2O2 core, and not the shortened U···U separation, was the primary mediator of
the super-exchange. Indeed, as reported by the authors,20d the AF coupling due to super-exchange
across the two oxo groups, modeled by a spin Hamiltonian, led to a particularly large fitted value
Jexp = −33 cm−1, suggesting that the butterfly geometry could be of interest for the building more
complex magnetic structures.

Other diuranium bis(µ-oxo) systems, synthesized by K. Meyer and Coll. [115], (in 2014) exhibit
diamond-core shaped [U(µ-O)2U] structural motifs and remarkably different magnetic behaviors
depending on the uranium oxidation state. Indeed, the magnetic data show for pentavalent
[{((nP,MeArO)3tacn)UV}2(µ-O)2] (tacn = triazacyclononane, nP = neopentyl) structure a UV/UV AF
coupled system, while its reduced species, the dianionc UIV/UIV K2[{((nP,MeArO)3tacn)UIV}2(µ-O)2]
tetravalent complex, revealed itself to be non-magnetic [115]. These two complexes (Figure 19), have
been investigated computationally using B3LYP coupled to the BS approach; scalar relativistic effects
were accounted for by using the ZORA Hamiltonian [155].
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The computations reveal the BS ground state of the pentavalent [UV(µ-O)2UV] 5f1-5f1 complex
lower in energy than the high spin (HS) triplet state, indicating a AF character in agreement with
experimental magnetic susceptibility measurements. The non-magnetic character observed for the
tetravalent K2[UIV(µ-O)2UIV] 5f2/5f2 species is also predicted by ZORA/B3LYP calculations which led
practically to the same energy for the HS and BS states [115]. As previously reported for related dioxo
diuranium(V) systems [49], super-exchange is likely to be responsible for the AF coupling through the
π-network orbital pathway within the (µ-O)2 bridge, with the dissymmetrical structure of the U2O2

core playing a determining role. Spin densities in HS and BS states were computed for the UV(µ-O)2UV

complex in order to understand and rationalize their AF character. The obtained spin density surfaces
(Figure 20) showed that both HS and BS states exhibit localized spin densities on the two magnetic
diuranium(V) centers, with significant values on their nearest Ooxo and non-negligible ones on the
OAr neighbors.
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Figure 20. ZORA/B3LYP spin density surfaces for the HS (triplet) in left and BS states in right of
UV(µ-O)2UV complex (blue color: positive and red color: negative spin density). The plotted isodensity
surfaces (a) HS and (b) BS states corresponds to a value of±0.0025 e bohr–3. (reprinted with permission
from [155], American Chemical Society, 2016).

Interestingly, the spin density maps show that the difference between the HS and BS states is the
sign alternation of the spin populations around the dioxo (µ-O)2 path-linking the two magnetic
UV(5fxyz

1) centers in its BS state. For the HS state, the spin of the bridging (µ-O)2 ligands is
symmetrically polarized by the two UV spin carriers. In contrast, for the BS state, the two oxygen
atoms are differently polarized with sign alternation of positive and negative spin densities.

The magnetic properties of di- and triuranyl(V) [UO2(dbm)2K(18C6)]2 (dbm: dibenzoylmethanate)
and [UO2(L)]3 (L = 2(4-Tolyl)-1,3-bis(quinolyl)malondiiminate) complexes (Figure 21), exhibiting
diamond-shape U2O2 and triangular-shape U3O3 cores with 5f1-5f1 and 5f1-5f1-5f1 configurations,
have been studied experimentally [23–25]. The ZORA/B3LYP calculations (unpublished results) which
have been carried out confirm the AF character of these complexes. The estimated J values have
been respectively found equal to −24.1 and −7.2 cm−1 for the dioxo and the trioxo species, the used
geometries of the magnetic cores being those of the X-ray structures.
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Figure 21. Optimized molecular structures of dioxo (a) [UO2(dbm)2K(18C6)]2 and trioxo (b). [UO2(L)]3

(L = 2(4-Tolyl)-1,3-bis(quinolyl)malondiiminate) Sticks used to depict C, N and K atoms; H atoms
have been omitted for clarity. Pink and red colors respectively for uranium and oxygen atoms.
(Unpublished results).

The obtained spin density maps (difference between the α and β electron densities) of the HS and
BS states of the diuranyl species are displayed in Figure 22. They are rather similar to those of the
UV(µ-O)2UV complex (Figure 20).
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Figure 22. ZORA/B3LYP spin density distributions for the HS (triplet) and BS states of the dioxo 
[UO2(dbm)2K(18C6)]2 system (blue color: positive and red color: negative spin density). The isodensity 
surface corresponds to a value of 0.0025 e bohr–3. (Unpublished results). (a) (HS); (b) (BS). 

Figure 22. ZORA/B3LYP spin density distributions for the HS (triplet) and BS states of the dioxo
[UO2(dbm)2K(18C6)]2 system (blue color: positive and red color: negative spin density). The isodensity
surface corresponds to a value of 0.0025 e bohr–3. (Unpublished results). (a) (HS); (b) (BS).

More recently (2017), the first benzoquinonoid-bridged dinuclear actinide complexes were
reported by S. Hohloch et al. [156] The target dinuclear systems with different structures,
i.e., UI(L)]2, [Th(L)]2QDipp, [Th(THF)(L)]2QOMe and [U(L)]2QOMe associated with the tripodal
tris[2-amido(2-pyridyl)ethyl]amine ligand L, have been synthesized from the dianionic 2,5-bis
[2,6-(diisopropyl)anilide]-1,4-benzoquinone (QDipp) and 2,5-bis[2-(methoxy)anilide]-1,4-benzoquinone
(QOMe) ligands, as depicted for the quinoid-bridged UIV/UIV diuranium system in Figure 23.
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analysis of the UIV/UIV diuranium [U(L)]2QOMe system shows that the four unpaired electrons 
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Figure 23. Schematic depiction (a) and molecular structure (b) of the imino-alkoxy quinoid
diuranium(IV) [U(L)]2QOMe system. (reprinted with permission from [156], the Royal Society of
Chemistry, 2017).

As reported by the authors, magnetic measurements of the duranium(IV) iodide [UI(L)]2 and
quinoid [U(L)]2QOMe bridged species, which exhibit long intermetallic UIV . . . UIV distances i.e.,
5.125(1) Å and 8.904(1) Å respectively, indicate that there is weak magnetic exchange between the two
uranium(IV) ions which was not quantified from the DC susceptibility measurements. Furthermore,
as reported in the study, the low-temperature susceptibility data indicate that the ground states for
the two UIV/UIV dimer should be non-magnetic singlets. With the support of DFT calculations, using
a hybrid B3PW91 functional [157] and a core pseudopotential for uranium, the electronic structure
analysis of the UIV/UIV diuranium [U(L)]2QOMe system shows that the four unpaired electrons
occupying SOMOs, are mainly of mixed uranium/quinoid character as illustrated by the SOMO-2
(Figure 24), except the SOMO−1, which is purely metal-based.
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Figure 24. SOMO-2 of the [U(L)]2QOMe quintet state system. Plot surfaces displayed with an iso-value
of 0.02 au (reprinted with permission from [156], the Royal Society of Chemistry, 2017).

The unpaired spin-density plot (Figure 25) shows that there is significant spin-delocalisation from
uranium to the quinoid bridge.

Importantly, the quinoid ligand of the diuranium(IV) [U(L)]2QOMe complex could undergo a
reversible reduction to form a radical anion. However, the chemical redox reaction leads to an unstable
and sensitive anionic complex, despite the fact that X-ray crystallography indicates that the product
contains a radical bridge. However, the magnetometry of the anionic species has not been investigated,
and the impact of the radical bridge on the intermetallic exchange interaction could not be evaluated.
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complex representation.  
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3.3. Mononuclear Actinide Complexes

Several uranium-radical systems emerged in the mid-2000s as mononuclear complexes
exhibiting magnetic properties [62,66,74,129–131,158–170]. Structural, spectroscopic and magnetic
properties of various mononuclear uranium(IV)-benzophenone radical complexes; e.g., the ketyl
[((tBuArO)3tacn)UIV(OC·tBuPh2)] complex (2) (Figure 26), were investigated by O.P. Lam et al.
(2008) [164] with the support of DFT calculations. The temperature dependence of the magnetic
susceptibility data for this ketyl radical complex shows a similar trend to that of a previous CO2

η1-bound uranium [((AdArO)3tacn)UIV(CO2
•−)] complex [165].
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of 4,4′-Di-tert-butylbenzophenone by U(III) precursor complex [((t-BuArO)3tacn)UIII] (1) followed by
H abstraction to form a U(IV) diphenyl methoxide complex 3 [164].

The ketyl radical complex 2 was modeled to have three unpaired electrons, computing it as a
U(III) complex. However, the resulting orbitals and spin density plots (Figure 27) suggest a more
complex representation.
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As reported by the authors, while SOMO-2 and SOMO-1 (Figure 27) are of δ-type fxyz and fz(x2-y2)
pure uranium 5f orbitals, the highest energy SOMO exhibits a metal/ligand character. The resulting
spin density of the U(IV) 5f2 complex (2) confirms that the fxyz and fz(x2-y2) orbitals carry the main
part of the spin, with a small spin polarization on the coordinated ligand. Variable temperature
magnetization data were measured for two independently synthesized samples. The data of complex
(2) show a steady drop in µeff as the temperature is lowered, decreasing from 3.48 µB at 300 K to 1.61 µB
at 5 K which is unusual compared to common U(IV) (5f2) complexes and is likely due to magnetic
contributions from the unpaired electron residing on the disubstituted benzophenone fragment, as well
as from the U(III) resonance structure (Figure 28, 2d). This is consistent with the DFT calculations,
in which one third of the single radical electron is localized on the uranium, hence, increasing the
magnetic moment.
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The authors concluded that regarding the magnetic data of complex (2) revealing an unusual 
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To date, only scarce examples of mixed (5f-3d) actinide/transition metal complexes exhibiting
magnetic exchange interactions are found in the literature [1,43–45,114,115,118–121]. Moderate
ferromagnetic exchange coupling was measured by J. D. Rinehart et al. (2007) [1,122] for the
linear chloride-bridged 5f−3d heterometallic mixed trinuclear UIV/MII/UIV dimethylpyrazolate
(cyclam)MII[(µ-Cl)UIV(Me2Pz)4]2 (MII = Ni, Cu, Co, Zn) cluster shown in Figure 29.
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The measured exchange constant J lies in the range 15–48 cm−1 for the CoU2 cluster core and
2.8–19 cm−1 for the NiU2 congener. To understand the origin of this ferromagnetic coupling within the
MU2 core, the authors considered a spin Hamiltonian of the following form: Ĥ = −2J[ŜCo·(ŜU1 + ŜU2)].

DFT/PBE calculations which were performed [58] on a [(Me2Pz)4UCl]− anionic fragment of the
cluster revealed the unpaired electrons of the UIV center to reside in the 5fxyz and 5fz(x

2−y
2

) orbitals, as
shown in Figure 30 [122].
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As reported, these orbitals have δ symmetry with respect to the U−Cl z-axis bond, such that the
overlap with σ and π orbitals of the chloride bridge will be zero. Any of the spin from the CoII 3dz2

orbital feeding through the chloride bridging ligands will therefore engage rigorously orthogonal
orbitals, leading to a ferromagnetic exchange interaction. Consistently, ferromagnetic exchange is also
observed for the NiU2 cluster, which features a NiII (S = 1) center with unpaired electrons in the 3dz2

and 3dx2−y2 orbitals. However, despite the presence of a large axial zero-field splitting for NiU2, no
indication of the slow magnetic relaxation is reported, as is typically observed for SMM behavior [1].

During the same year (2007) there has been a report suggesting that coupling may occur through
direct metal-metal orbital overlap in the mixed-valence linear trinuclear cluster U(fc[NSiMe3]2)2

(fc = 1,1′-ferrocenylene) and its [FeIIUIVFeIII(C5H4NSi(tBu)Me2)4]BPh4 cationic congener which is
depicted in Figures 31 and 32. [18] The latter molecule exhibits a rigid coordination to ferrocenylamido
moieties and U···Fe distances of 2.9556(5) and 2.9686(5) Å.
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= Cf III and BkIII) [171,172], have been studied using both GGA and hybrid functionals in conjunction 
with NBO analysis [8].  

Figure 32. (a) X-ray Structure of [FeIIUIVFeIII (C5H4NSi(tBu)Me2)4] cation (1+) complex. H atoms are
omitted for clarity. (b) Variable-temperature magnetic data for UFeII

2 (1, black squares) and FeIIUIVFeIII

(1-BPh4, red circles). (Reprinted with permission from [18], American Chemical Society, 2007).

This mixed-valent bisferrocenyl complexes have been studied in order to understand the
dependence of the electronic coupling between the two iron centers relative to the linker connecting
them. When uranium is used as a linker, 5f orbitals make this actinide a better mediator than the
zirconium d-transition metal for the electronic communication between iron centers. Indeed, as noted
by the authors [1,18], the observed behavior is indicative of an extremely strong ferromagnetic exchange
UIV−FeIII interaction, mediated by direct orbital overlap between the metals orbitals. DFT calculations
were performed on the thorium and zirconium bisferrocene trinuclear Th(fc[NH]2)2 cation models
related to the actual U(fc[NSiMe3]2)2 system. For the thorium bisferrocene cation model, additionally,
the HOMO and HOMO-5 (Figure 33) consist of a uranium 5f orbital interacting with orbitals of both
iron atoms at the same time, which might explain the occurrence of strong electronic communication
mediated by actinide-transition metal orbital overlap.
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Finally, magnetic coupling was also reported in 2006 for 5f-4f trinuclear UYb2 cluster
Cp*2U[(NC(CH2C6H5)tpy)YbCp*2]2 (tpy = terpyridyl) [108].

3.5. Magnetic Susceptibility and EPR/NMR Spectra of Actinide Complexes

New developments in the computational transuranium chemistry were surveyed recently (2018)
by N. Katsoyannis [8], with emphasis on the assessment of the magnetic properties of transuranic
elements. As reported in this review, the magnetic susceptibility and the electronic structure of borate
materials, in particular those of Californium (Cf) and Berkelium (Bk) metals, e.g., An[B6O8(OH)5
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(An = Cf III and BkIII) [171,172], have been studied using both GGA and hybrid functionals in
conjunction with NBO analysis [8].

The electronic structures and magnetic properties of Ar3UIV−L complexes, with Ar = C5(CH3)4H−

or C5H5
− and L = CH3, NO, and Cl have been investigated recently (2014) [67]. The study

aimed to provide ab initio data for the magnetic susceptibilities, assignments of the low-energy
parts of the electronic spectra, as well as characterizations of selected states based on natural
orbitals and their occupations. For the ground states, relativistic CASSCF and CASPT2 calculations
were compared to scalar relativistic DFT using the ZORA Hamiltonian. As concluded by the
authors, for the nitrosyl complex, the ground state is a closed-shell spin-singlet i.e., a nonmagnetic
ground state. For the other L = Cl and CH3 complexes, the ground states are triplets, with no
orbital degeneracy for the chloride complexes and an orbital-doublet for the methyl complex.
Furthermore, the nature of the electronic ground state and low-energy excited states is evidenced
by the susceptibility curves displaying linear χT [67]. The computed susceptibilities from ab initio
calculations agree well with available experimental data; e.g., for the (C5Me4H)3UCl complex, the ab
initio calculated temperature-independent paramagnetism (TIP) susceptibility χTIP is 8.52 and 10.44
(units of 103 cm3mol−1) for the experimental and optimized structure, respectively.

DFT-based calculations have also been reported [168] and proved to correctly reproduce chemical
shifts of diamagnetic uranium(VI) compounds. DFT benchmarking calculations of 1H and 13C NMR
chemical shifts of closed shell U(VI) systems for which experimental data are available (Figure 34),
were reported [79]. Different levels of GGA and hybrid functionals were employed, i.e., B3LYP [86,87],
PBE [148], PBE0 [149], LC-ωPBE [173,174], TPSS and TPSSh [175,176] and also including the Grimme’s
D3 dispersion corrections [150,157]. Overall, it was found that the most robust methodology for
obtaining accurate geometries is the PBE functional with Grimme’s D3 dispersion corrections, whereas
for 1H and 13C NMR chemical shifts, no special recommendation emerges regarding the best choice of
density functional, although for spin-spin couplings, the LC-ωPBE functional with solvent corrections
is a good approach.
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The authors concluded that among the investigated approaches, the disagreement with
experiment of the averaged 1H and 13C chemical shifts rarely exceeds 15% deviation for the studied
U(VI) compounds. The geometry employed has relatively little effect on the 1H and 13C chemical
shifts, and increasing the quality of the basis set to include triple and quadruple polarizations does
not bring any improvement. For spin-spin couplings, the inclusion of relativistic effects with ZORA
including spin-orbit coupling (SOC) led to a less dispersed set of results for 13C NMR signals relatively
to scalar ZORA calculations.

Autschbach and Coll. [169,170] have recently (2016) investigated theoretically using DFT
calculations combined with two-component ZORA and four-component Dirac–Kohn–Sham (DKS)
relativistic frameworks, the SOC effects in a uranium(VI) complex regarding NMR chemical shifts.
Gas-phase structures were optimized using def2-TZVP basis sets and the PBE functional [148], as well
as with two hybrid PBE0 [149] and B3LYP functionals [86,87]. Bulk solvent effects on the optimized
structures and on the computed NMR shieldings were simulated via the conductor-like screening
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model (COSMO) [169]. Their study aimed to reassess the giant spin–orbit effects on NMR shifts
observed for closed shell uranium(VI) complexes, investigating the role of the exchange–correlation
response kernel. As reported by the authors [169], the considered exchange–correlation kernel in
two-component ZORA/DFT calculations is crucial to properly predict the giant 1H NMR shifts
in closed-shell uranium(VI) hydride complexes, and also of the extremely large SOC induced
13C shifts for uranium(VI)-bound carbon atoms. The range for unknown shifts with the revised
approach was successfully predicted, and further predictions have been made for complexes that are
synthetically known.

Finally, the magnetic susceptibility of actinide(III) cations has been intensively investigated by
synergetic experimental and theoretical study, as reported by H. Bolvin and Coll. [177]. Through
DFT and SO-CASPT2 calculations, the authors aimed to rationalize the experimental magnetic
susceptibilities of [An(H2O)9](CF3SO3) actinide(III) aqua complexes (An = Pu, Am and Cm).
The geometry optimizations were performed using the B3LYP functional and an implicit solvation
model. Once magnetic susceptibility measurements of An(III) cations were corrected from radioactivity
effects, SOC-CASPT2 calculations have been used on free ions and aquo complexes to calculate the
electronic structure explaining the magnetic properties of Pu(III), Am(III) and Cm(III). EPR is a useful
tool to probe molecular magnetic properties. This tool was used to study U(V) nitride complexes [178].
The relative importance of the investigated spin–orbit and crystal field interactions explains the
different ground states of the nitride complexes relative to oxo isoelectronic species. In addition,
U(V)-U(V) super-exchange coupling in dimers of these complexes has been studied in relation with
EPR experiments [178]. Through EPR and magnetic susceptibility measurements, another U(V)-U(V)
system, namely U[ArOSeOAr]2(THF)}2(µ2-OC6H4O), which is found to exhibit unusual magnetic
properties, also deserves to be highlighted [179].

4. Conclusions

The DFT computation of magnetic coupling constants of polynuclear actinide complexes, mainly
of uranium, is now well documented. Several magnetic dinuclear or trinuclear uranium complexes
have been successfully investigated; the tried and tested methodology makes use of the broken
symmetry approach and a hybrid DFT functional, mainly the B3LYP one. A variety of bridging
ligands between the uranium centers have been considered either experimentally or theoretically;
among them, imido or ketimide phenyl and benzoquinonoide-based conjugated bridges, but also oxo,
nitrido and chalcogeno bridges. Bis- and tris-uranyl-based complexes have also been investigated,
as well as inverted-sandwich uranium species. Complexes containing uranium in different oxidation
states, U(V), U(IV) and U(III) leading to magnetic electron configurations, 5f1-5f1, 5f2-5f2 and 5f3-5f3

have been studied; the ferromagnetic or antiferromagnetic character of the coupling is generally
correctly predicted by DFT computations. The magnetic properties of such complexes arise from
spin polarization and super-exchange, which are rationalized thanks to frontier MO and spin density
analyses. DFT studies regarding mononuclear uranium complexes, SMMs and mixed 5f-3d or 5f-4f
actinide-transition metal and actinide-lanthanide species, are very scarce in the literature.

Encouraging results have been obtained over recent decades by applying DFT calculations
to investigate and rationalize magnetic exchange coupling within actinide polynuclear systems.
The generally good agreement between DFT results and the experimental findings gives us confidence
that this computationally-cheap approach will remain useful, even if more sophisticated and accurate
post-Hartree-Fock treatments will be more developed in the future, thanks to the increasing power
of computers.
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