G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding et al.,

J. Fink, A. F. Ballato, and . Abouraddy, Infrared fibers, Adv. Opt. Photon, vol.7, pp.379-458, 2015.

E. A. Anashkina, V. S. Shiryaev, M. Y. Koptev, B. S. Stepanov, and S. V. Muravyev, Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion, J. Non-Cryst. Solids, vol.480, pp.43-50, 2017.

J. Adam and X. Zhang, Chalcogenide glasses, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01194452

L. Lan, H. Lin, S. Qiao, Z. Yi, S. Danto et al.,

. Hu, Integrated flexible chalcogenide glass photonic devices, Nat. Photonics, vol.8, pp.643-649, 2014.

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, Multihundred-watt CO laser power delivery through chalcogenide glass fibers, Appl. Phys. Lett, vol.62, pp.669-671, 1993.

A. Sincore, J. Cook, F. Tan, A. E. Halawany, A. Riggins et al., High power single-mode delivery of midinfrared sources through chalcogenide fiber, Opt. Express, vol.26, pp.7313-7323, 2018.

H. Suto, Chalcogenide fiber bundle for 3D spectroscopy, Infrared Phys. Technol, vol.38, pp.93-99, 1997.

B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang et al.,

G. Tang, B. Tao, and . Luther-davies, High-resolution chalcogenide fiber bundles for infrared imaging, vol.40, pp.4384-4387, 2015.

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang et al.,

. Davies, High-resolution chalcogenide fiber bundles for longwave infrared imaging, Opt. Express, vol.25, pp.26160-26165, 2017.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont et al.,

N. Sujecki, Z. Abdel-moneim, D. Tang, A. Furniss, O. Seddon et al., Mid-infrared supercontinuum covering the 1.4-13.3 ?m molecular fingerprint region using ultrahigh NA chalcogenide step-index fibre, Nat. Photonics, vol.8, pp.830-834, 2014.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu et al.,

. Wang, Mid-infrared supercontinuum covering 2.0-16 ?m in a low-loss telluride single-mode fiber, Laser Photonics Rev, vol.11, p.1700005, 2017.

,

N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan et al., Ultrabroadband and coherent mid-infrared supercontinuum generation in

, Te-based chalcogenide tapered fiber with all-normal dispersion, Opt. Express, vol.27, pp.10311-10319, 2019.

R. Chahal, F. Starecki, C. Boussard-plédel, J. L. Doualan, K. Michel et al., Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers, Sens. Actuators B: Chem, vol.229, pp.209-216, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269748

A. K. Sharma, J. Gupta, and R. Basu, Simulation and performance evaluation of fiber optic sensor for detection of hepatic malignancies in human liver tissues, Opt. Laser Technol, vol.98, pp.291-297, 2018.

A. P. Velmuzhov, V. S. Shiryaev, M. V. Sukhanov, T. V. Kotereva, and M. F. ,

N. S. Churbanov, A. D. Zernova, and . Plekhovich, Fiber sensor on the basis of

, Ge 26 As 17 Se 25 Te 32 glass for FEWS analysis, Opt. Mater, vol.75, pp.525-532, 2018.

G. Yang, J. C. Sangleboeuf, C. Boussard-plédel, and B. Bureau, Effect of Physical Aging Conditions on the Mechanical Properties of Te 2 As 3 Se 5 (TAS) Glass Fibers, J. Am. Ceram. Soc, vol.96, pp.464-468, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830322

D. Brandová and R. Svoboda, Thermo-structural characterization of (As 2 Se 3 ) 100-x -(As 2 Te 3 ) x glasses for infrared optics, J. Am. Ceram. Soc, vol.102, pp.382-396, 2019.

Z. Wu, L. Yang, Y. Xu, P. Zhang, Q. Nie et al., -13 ?m supercontinuum generation by pumping at normal dispersion regime of As-Se-Te glass fiber, J. Am, vol.1, issue.8

. Ceram and . Soc,

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne et al.,

P. Loréal, V. Lucas, and . Monbet, Chalcogenide optical fibers for mid-infrared sensing, Opt. Eng, vol.53, p.27101, 2014.

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-plédel, J. Lucas et al.,

. Churbanov, Infrared fibers based on Te-As-Se glass system with low optical losses, J. Non-Cryst. Solids, vol.336, pp.113-119, 2004.

S. Hocdé, O. Loréal, O. Sire, B. Turlin, C. Boussard-plédel et al., Biological tissue infrared analysis by chalcogenide glass optical fiber spectroscopy, Biomonitoring and Endoscopy Technologies, vol.4158, pp.49-56, 2001.

P. Lucas, G. J. Coleman, C. Cantoni, S. Jiang, T. Luo et al.,

J. Boussardpledel, Z. Troles, and . Yang, Chalcogenide glass sensors for bio-molecule detection, in: Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII, Proc. SPIE 10058, 2017.

M. F. Kotkata, S. R. Atalla, and M. K. El-mously, Measurement of the electrical and thermal conductivity coefficients of As, vol.2

, Thermal Conductivity 14, pp.39-44, 1976.

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu et al.,

. Wang, Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures, Opt. Express, vol.23, pp.23472-23483, 2015.

M. F. Chubanov, High-purity glasses based on arsenic chalcogenides, Optoelectron. Adv. Mater, vol.3, pp.341-349, 2001.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, Chalcogenide glass fibers for mid-infrared transmission, J. Lightwave Technol, vol.2, pp.607-613, 1984.

B. Bureau, C. Boussard-pledel, P. Lucas, X. Zhang, and J. Lucas, Forming glasses from Se and Te, Molecules, vol.14, pp.4337-4350, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00496886

Z. U. Borisova, Glassy Semiconductors, 1981.

V. S. Shiryaev, M. F. Churbanov, E. M. Dianov, V. G. Plotnichenko, J. L. Adam et al.,

. Lucas, Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content, J. Optoelectron. Adv. Mater, vol.7, pp.1773-1779, 2005.

A. Hrubý, Evaluation of glass-forming tendency by means of DTA, Czechoslovak Journal of Physics B, vol.22, pp.1187-1193, 1972.

V. S. Shiryaev, J. L. Adam, X. H. Zhang, and M. F. Churbanov, Study of characteristic temperatures and nonisothermal crystallization kinetics in As Se Te glass system, Solid State Sci, vol.7, pp.209-215, 2005.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, Highpurity chalcogenide glasses for fiber optics, Inorg. Mater, vol.45, pp.1439-1460, 2009.

J. Lucas and X. Zhang, The tellurium halide glasses, J. Non-Cryst. Solids, vol.125, pp.1-16, 1990.

G. Delaizir, M. Dussauze, V. Nazabal, P. Lecante, M. Dollé et al.,

P. Kamitsos, B. Jovari, and . Bureau, Structural characterizations of As-Se-Te glasses, J. Alloys Compd, vol.509, pp.831-836, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00719554

P. Jóvári, B. Bureau, I. Kaban, V. Nazabal, B. Beuneu et al., The structure of As 3 Se 5 Te 2 infrared optical glass, J. Alloys Compd, vol.488, pp.39-43, 2009.

S. Hocdé, G. Fonteneau, and J. Lucas, Chalcogens Based Glasses for IR Fiber Chemical Sensors, Solid State Sci, vol.3, pp.279-284, 2001.

V. Shiryaev, C. Boussard-plédel, P. Houizot, T. Jouan, J. Adam et al., Single-mode infrared fibers based on Te-As-Se glass system, Mater. Sci. Eng. B, vol.127, pp.138-143, 2006.

B. Lv, K. Yang, H. Lang, and H. Xue, Effect of trace impurities on loss of As-Se-Te glass infrared fiber, Laser Infra, vol.31, pp.121-123, 2001.

K. Michel, B. Bureau, C. Boussard-pledel, T. Jouan, J. L. Adam et al., Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers, Sens. Actuators B: Chem, vol.101, pp.252-259, 2004.

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot et al., Te-As-Se glass microstructured optical fiber for the middle infrared, Appl. Opt, vol.48, pp.3860-3865, 2009.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier et al., Interfaces impact on the transmission of chalcogenides photonic crystal fibres, J. Ceram. Soc. Jpn, vol.116, pp.1024-1027, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428897

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials, Sensors, vol.16, p.99, 2016.

B. Bureau, C. Boussard, V. Nazabal, and J. Troles, Development of chalcogenide glass fibers for mid-IR technologies, Smart Photonic and Optoelectronic Integrated Circuits XX, Proc. SPIE 10536, p.1053605, 2018.

X. Jiang and A. Jha, Engineering of a Ge-Te-Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products, Sens. Actuators B: Chem, vol.206, pp.159-169, 2015.

S. Cui, R. Chahal, C. Boussard-plédel, V. Nazabal, J. L. Doualan et al.,

B. Lucas and . Bureau, From selenium-to tellurium-based glass optical fibers for infrared spectroscopies, Molecules, vol.18, pp.5373-5388, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00848949

X. Jiang and A. Jha, An infrared fibre evanescent wave spectroscopic (FEWS) sensor using purified GeTeSe chalcogenide fibres, 20th International Conference on Optical Fibre Sensors, Proc. SPIE 7503, p.750319, 2009.

P. Lucas, D. L. Coq, C. Juncker, J. Collier, D. E. Boesewetter et al.,

B. Plédel, M. R. Bureau, and . Riley, Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy, Appl. Spectrosc, vol.59, pp.1-9, 2005.

B. Bureau, X. H. Zhang, F. Smektala, J. L. Adam, J. Troles et al.,

J. Boussard-plèdel, P. Lucas, D. L. Lucas, and . Coq, Recent advances in chalcogenide glasses, J. Non-Cryst. Solids, vol.345, pp.276-283, 2004.

S. Hocdé, C. Boussard-plédel, G. Fonteneau, D. L. Coq, H. L. Ma et al., Recent developments in chemical sensing using infrared glass fibers, J. Non-Cryst. Solids, vol.274, pp.17-22, 2000.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-plédel et al.,

T. Jouan, J. Rouxel, K. Adam, H. Staubmann, T. Steinner et al.,

W. Bayona and . Konz, Development of a chalcogenide glass fiber device for in situ pollutant detection, J. Non-Cryst. Solids, vol.326, pp.434-438, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01148183

M. L. Corvec, F. Charpentier, A. Kachenoura, S. Bensaid, S. Henno et al.,

B. Jacquet, V. Turlin, L. Monbet, and O. Senhadji, Fast and non-invasive medical diagnostic using mid infrared sensor: The AMNIFIR project, IRBM, vol.37, pp.116-123, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01296780

R. Anty, M. L. Corvec, A. Iannelli, S. Patouraux, M. Saint-paul et al.,

C. Schneck, I. Canivet, J. Ben-amor, O. Gugenheim, and . Sire, Mid-infrared spectroscopy has a high sensitivity and specificity for point-of-care diagnosis of non-alcoholic steato-hepatitis, J. Hepato, vol.64, p.177, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01534205

J. Albert, V. Monbet, A. Jolivet-gougeon, N. Fatih, M. L. Corvec et al., A novel method for a fast diagnosis of septic arthritis using mid infrared and deported spectroscopy, Joint Bone Spine, vol.83, pp.318-323, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01243032

A. F. Kosolapov, A. D. Pryamikov, M. S. Astapovich, V. S. Shiryaev, and G. E. ,

V. G. Snopatin, A. S. Plotnichenko, M. F. Biriukov, E. M. Churbanov, and . Dianov, Demonstration of waveguide regime for chalcogenide hollow-core optical fiber with negative curvature of core boundary from mid-to far-infrared, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, 2011.

A. J. Faber, B. Bureau, C. Boussardplédel, J. Lucas, J. P. Carmo et al.,

P. A. Houizot, W. L. Nijnatten, and . Gielesen, Infrared single mode chalcogenide glass fiber for space, Opt. Express, vol.15, pp.12529-12538, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00368096

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, Shear flow-induced optical wavelength range, J. Biomed. Opt, vol.16, p.116020, 2011.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier et al., Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett, vol.43, pp.999-1002, 2018.

E. A. Anashkina, V. S. Shiryaev, G. E. Snopatin, S. V. Muraviev, and A. V. Kim, On the possibility of mid-IR supercontinuum generation in As-Se-Te/As-S core/clad fibers with all-fiber femtosecond pump source, J. Non-Cryst. Solids, vol.480, pp.38-42, 2017.

, ? Formation and properties of Te-As-Se glasses were reviewed

, ? Applications in optics and medical of Te-As-Se fibers were summarized

, ? Prospects of the applications in medical diagnosis and supercontinuum generation. Declarations of interest: none