J. M. O'neil, T. W. Davis, M. A. Burford, and C. J. Gobler, The rise of harmful 656 cyanobacteria blooms: The potential roles of eutrophication and climate 657 change, Harmful Algae, vol.14, pp.313-334, 2012.

D. L. Nielsen, M. A. Brock, G. N. Rees, and D. S. Baldwin, Effects of increasing 659 salinity on freshwater ecosystems in Australia, Aust J Bot, vol.51, p.655, 2003.

J. Verspagen, J. Passarge, K. D. Jöhnk, P. M. Visser, L. Peperzak et al., , p.661

H. J. Laanbroek and J. Huisman, Water management strategies against toxic 662, 2006.

, Microcystis blooms in the Dutch delta, Ecol Appl, vol.16, pp.313-340

E. White and D. Kaplan, Restore or retreat? saltwater intrusion and water 664 management in coastal wetlands, Ecosyst Heal Sustain, vol.3, p.1258, 2017.

J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. Verspagen et al., Cyanobacterial blooms, Nat Rev Microbiol, vol.666, pp.471-483, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01371829

H. W. Paerl and J. Huisman, Climate change: a catalyst for global expansion of 668 harmful cyanobacterial blooms, Environ Microbiol Rep, vol.1, pp.27-37, 2009.

H. Paerl, Mitigating Harmful Cyanobacterial Blooms in a Human-and 670, 2014.

, Climatically-Impacted World. Life, vol.4, pp.988-1012

E. Funari, M. Manganelli, F. M. Buratti, and E. Testai, Cyanobacteria blooms in 672 water: Italian guidelines to assess and manage the risk associated to bathing 673 and recreational activities, Sci Total Environ, vol.598, pp.867-880, 2017.

M. J. Harke, M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm et al.,

. Hw, A review of the global ecology, genomics, and biogeography of the 676 toxic cyanobacterium, Microcystis spp, Harmful Algae, vol.54, pp.4-20, 2016.

J. Humbert, V. Barbe, A. Latifi, M. Gugger, A. Calteau et al., , vol.678

V. Castelli, S. Oztas, G. Samson, C. Longin, C. Medigue et al., A 679 Tribute to Disorder in the Genome of the Bloom-Forming Freshwater 680, 2013.

, Cyanobacterium Microcystis aeruginosa, PLoS One, vol.8, p.70747

E. P. Preece, F. J. Hardy, B. C. Moore, and M. Bryan, A review of microcystin 682 detections in Estuarine and Marine waters: Environmental implications and 683 human health risk, Harmful Algae, vol.61, pp.31-45, 2017.

B. J. Robson and D. P. Hamilton, Summer flow event induces a cyanobacterial 685 bloom in a seasonal Western Australian estuary, Mar Freshw Res, vol.54, p.139, 2003.

T. Takahashi, A. Umehara, and H. Tsutsumi, Diffusion of microcystins 687 (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the 688 marine and surrounding ecosystems as a result of large-scale drainage, 2014.

, Pollut Bull, vol.89, pp.250-258

E. P. Preece, B. C. Moore, and F. J. Hardy, Transfer of microcystin from 691 freshwater lakes to Puget Sound, WA and toxin accumulation in marine 692 mussels (Mytilus trossulus), Ecotoxicol Environ Saf, vol.122, pp.98-105, 2015.

G. Martínez-de-la-escalera, C. Kruk, A. M. Segura, L. Nogueira, and I. Alcántara, Piccini, vol.694, p.29

C. , Dynamics of toxic genotypes of Microcystis aeruginosa complex 695 (MAC) through a wide freshwater to marine environmental gradient, Harmful, vol.696, pp.73-83, 2017.

P. W. Lehman, T. Kurobe, S. Lesmeister, D. Baxa, A. Tung et al., , 2017.

, Harmful Algae, vol.63, pp.94-108

M. Bormans, Z. Amzil, E. Mineaud, L. Brient, V. Savar et al., , 2019.

, Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-702 marine continuum in France, Harmful Algae, vol.87, p.101639

H. W. Paerl, T. G. Otten, and R. Kudela, Mitigating the Expansion of Harmful 704, 2018.

, Algal Blooms Across the Freshwater-to-Marine Continuum, Environ Sci 705 Technol, vol.52, pp.5519-5529

C. Ross, B. C. Warhurst, A. Brown, C. Huff, and J. D. Ochrietor, Mesohaline 707 conditions represent the threshold for oxidative stress, cell death and toxin 708 release in the cyanobacterium Microcystis aeruginosa, Aquat Toxicol, vol.206, pp.203-709, 2019.

S. Otsuka, S. Suda, R. Li, M. Watanabe, H. Oyaizu et al., , p.711

. Mm, Characterization of morphospecies and strains of the genus 712, 1999.

, Microcystis (Cyanobacteria) for a reconsideration of species classification

, Phycol Res, vol.47, pp.189-197

P. T. Orr, G. J. Jones, and G. B. Douglas, Response of cultured Microcystis 715 aeruginosa from the Swan River, Australia, to elevated salt concentration and 716 consequences for bloom and toxin management in estuaries, Mar Freshw Res, vol.717, p.277, 2004.

. Bartolomé, D. Mc, A. 'ors, and S. Sánchez-fortún, Toxic effects induced by salt 719 30 stress on selected freshwater prokaryotic and eukaryotic microalgal species, Ecotoxicology, vol.720, pp.174-179, 2009.

K. Black, M. Yilmaz, and E. J. Phlips, Growth and Toxin Production by 722, 2011.

, Microcystis Aeruginosa PCC 7806 (Kutzing) Lemmerman at Elevated Salt 723

, Concentrations. J Environ Prot, vol.02, pp.669-674

B. Martín-luna, E. Sevilla, M. T. Bes, M. F. Fillat, and M. L. Peleato, Variation in the 725 synthesis of microcystin in response to saline and osmotic stress in Microcystis 726 ruginosa PCC7806, Limnetica, vol.34, pp.205-214, 2015.

R. H. Reed and A. E. Walsby, Changes in turgor pressure in response to 728 increases in external NaCl concentration in the gas-vacuolate cyanobacterium 729, 1985.

, Microcystis sp, Arch Microbiol, vol.143, pp.290-296

W. J. Mitsch and J. G. Gosselink, , p.731, 2000.

N. York,

Y. Zhang, Q. Xu, and B. Xi, Effect of NaCl salinity on the growth, metabolites, p.733, 2013.

, and antioxidant system of Microcystis aeruginosa, J Freshw Ecol, vol.28, pp.477-487

Y. Tanabe, Y. Hodoki, T. Sano, K. Tada, and M. M. Watanabe, , p.735, 2018.

, Freshwater Bloom-Forming Cyanobacterium Microcystis aeruginosa to 736

, Brackish Water Is Driven by Recent Horizontal Transfer of Sucrose Genes

, Front Microbiol, vol.9, pp.1-11

L. Tonk, K. Bosch, P. Visser, and J. Huisman, Salt tolerance of the harmful 739, 2007.

. Cyanobacterium-microcystis-aeruginosa, Aquat Microb Ecol, vol.46, pp.117-123

H. Mazur-marzec, K. Forycka, J. Kobos, M. Pli?ski, and G. Browarczyk-matusiak, Morphological, genetic, chemical and ecophysiological characterisation 742 of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic, vol.741, pp.127-146, 2010.

M. Hagemann, Molecular biology of cyanobacterial salt acclimation, 2011.

, FEMS Microbiol Rev, vol.35, pp.87-123

J. Stefels, Physiological aspects of the production and conversion of 747 DMSP in marine algae and higher plants, J Sea Res, vol.43, pp.183-197, 2000.

A. Oren, Diversity of Organic Osmotic Compounds and Osmotic 749, 2007.

, Adaptation in Cyanobacteria and Algae, Archaea, pp.639-655

E. Bucciarelli, C. Ridame, W. G. Sunda, C. Dimier-hugueney, M. Cheize et al., Increased intracellular concentrations of DMSP and DMSO in iron, vol.751, p.752, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00946771

, oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum

, Limnol Oceanogr, vol.58, pp.1667-1679

M. Steinke, B. Hodapp, R. Subhan, T. G. Bell, and D. Martin-creuzburg, Flux of 755 the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake, 2018.

, Sci Rep, vol.8, p.630

M. Hagemann, N. Erdmann, and E. Wittenburg, Synthesis of glucosylglycerol 758 in salt-stressed cells of the cyanobacterium Microcystis firma, Arch Microbiol, vol.759, pp.275-279, 1987.

M. A. Kolman, L. L. Torres, M. L. Martin, and G. L. Salerno, Sucrose synthase in 761 unicellular cyanobacteria and its relationship with salt and hypoxic stress, 2012.

, Planta, vol.235, pp.955-964

G. Sandrini, J. Huisman, and H. Matthijs, Potassium sensitivity differs 764 among strains of the harmful cyanobacterium Microcystis and correlates with 765 the presence of salt tolerance genes, FEMS Microbiol Lett, vol.362, pp.1-17, 2015.

E. Szyma?ska, E. Saccenti, A. K. Smilde, and J. A. Westerhuis, Double-check: 767 validation of diagnostic statistics for PLS-DA models in metabolomics studies, 2012.

, Metabolomics, vol.8, pp.3-16

L. Favre, A. Ortalo-magné, C. Pichereaux, A. Gargaros, and O. Burlet-schiltz, Cotelle, vol.770

V. and C. G. , Metabolome and proteome changes between biofilm and 771 planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica 772 TC8, Biofouling, vol.34, pp.132-148, 2018.

L. Cao, K. Boitard, S. Besse, and P. , Sparse PLS discriminant analysis: 774 biologically relevant feature selection and graphical displays for multiclass 775 problems, BMC Bioinformatics, vol.12, p.253, 2011.

R. Atkins, T. Rose, R. S. Brown, and M. Robb, The Microcystis cyanobacteria 777 bloom in the Swan River, Water Sci Technol, vol.43, pp.107-114, 2000.

A. Omidi, M. Esterhuizen-londt, and S. Pflugmacher, Still challenging: the 779 ecological function of the cyanobacterial toxin microcystin -What we know so 780 far, Toxin Rev, vol.37, pp.87-105, 2018.

L. Chen, F. Mao, G. C. Kirumba, C. Jiang, M. Manefield et al., Changes in 782 metabolites, antioxidant system, and gene expression in Microcystis 783 aeruginosa under sodium chloride stress, Ecotoxicol Environ Saf, vol.122, pp.126-135, 2015.

P. T. Orr, A. Willis, and M. A. Burford, Application of first order rate kinetics to 785 explain changes in bloom toxicity-the importance of understanding cell toxin 786 quotas, J Oceanol Limnol, vol.36, pp.1063-1074, 2018.

P. T. Orr and G. J. Jones, Relationship between microcystin production and cell 788 division rates in nitrogen-limited Microcystis aeruginosa cultures, Limnol 789 Oceanogr, vol.43, pp.1604-1614, 1998.

M. V. Amé and D. A. Wunderlin, Effects of Iron, Ammonium and Temperature on 791, 2005.

, Microcystin Content by a Natural Concentrated Microcystis Aeruginosa 792

, Population. Water Air Soil Pollut, vol.168, pp.235-248

D. B. Van-de-waal, J. Verspagen, M. Lürling, E. Van-donk, and P. M. Visser, , p.794

J. Huisman, The ecological stoichiometry of toxins produced by harmful 795 cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis, 2009.

, Ecol Lett, vol.12, pp.1326-1335

K. Soto-liebe, M. A. Méndez, L. Fuenzalida, B. Krock, A. Cembella et al., PSP toxin release from the cyanobacterium Raphidiopsis brookii D9 799 (Nostocales) can be induced by sodium and potassium ions, Toxicon, vol.798, pp.1324-800, 2012.

E. Sevilla, B. Martin-luna, M. T. Bes, M. F. Fillat, and M. L. Peleato, An active 802 photosynthetic electron transfer chain required for mcyD transcription and 803 microcystin synthesis in Microcystis aeruginosa PCC7806, Ecotoxicology, vol.804, pp.811-819, 2012.

E. A. Galinski, Osmoadaptation in bacteriaAdvances in Microbial 806 Physiology, 1995.

M. Hagemann, Genomics of Salt Acclimation, BS:ABR, pp.27-55, 2013.

, Microbial water stress, Bacteriol Rev, vol.40, pp.803-849, 1976.

S. Meissner, D. Steinhauser, and E. Dittmann, Metabolomic analysis indicates 811 a pivotal role of the hepatotoxin microcystin in high light adaptation of M 812 icrocystis, Environ Microbiol, vol.17, pp.1497-1509, 2015.

M. Hagemann, The Physiology of MicroalgaeThe Physiology of 814, 2016.

. Microalgae,

S. Klähn and M. Hagemann, Compatible solute biosynthesis in cyanobacteria, 2011.

, Environ Microbiol, vol.13, pp.551-562

C. Martin, L. Oberer, T. Ino, W. A. König, M. Busch et al., , 1993.

. Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. 819 pcc 7806, J Antibiot (Tokyo), vol.46, pp.1550-1556

E. Briand, M. Bormans, M. Gugger, P. C. Dorrestein, and W. H. Gerwick, Changes 821 in secondary metabolic profiles of Microcystis aeruginosa strains in response to 822 intraspecific interactions, Environ Microbiol, vol.18, pp.384-400, 2016.

E. Janssen, Cyanobacterial peptides beyond microcystins -A review 824 on co-occurrence, toxicity, and challenges for risk assessment, Water Res, vol.825, pp.488-499, 2019.

L. Tonk, M. Welker, J. Huisman, and P. M. Visser, Production of cyanopeptolins, p.827, 2009.

, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 828 and Microcystis PCC 7806, vol.8, pp.219-224

H. Wada and N. Murata, Membrane Lipids in Cyanobacteria BT -Lipids in 830, 1998.

, Photosynthesis: Structure, Function and Genetics, p.831

K. Mikami and N. Murata, Membrane fluidity and the perception of 833 environmental signals in cyanobacteria and plants, Prog Lipid Res, vol.42, pp.527-543, 2003.

S. I. Allakhverdiev, Y. Nishiyama, I. Suzuki, Y. Tasaka, and N. Murata, Genetic 835 engineering of the unsaturation of fatty acids in membrane lipids alters the 836 tolerance of Synechocystis to salt stress, Proc Natl Acad Sci, vol.96, pp.5862-5867, 1999.

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, Generic 838 assignments, strain histories and properties of pure cultures of cyanobacteria, 839 Microbiology, vol.111, pp.1-61, 1979.

. Le and B. Charrier, Plant Organogenesis, p.841, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856206

H. L. Macintyre and J. J. Cullen, Using cultures to investigate the physiological 842 ecology of microalgae, Algal Cult Tech, pp.287-326, 2005.

D. Marie, N. Simon, and D. Vaulot, Phytoplankton cell counting by flow 844 cytometry, Algal Cult Tech, vol.1, pp.253-267, 2005.

A. M. Wood, R. C. Everroad, and L. M. Wingard, Measuring growth rates in 846 microalgal cultures, Algal Cult Tech, vol.18, pp.269-288, 2005.

J. C. Kromkamp and R. M. Forster, The use of variable fluorescence 848 measurements in aquatic ecosystems: differences between multiple and single 849 turnover measuring protocols and suggested terminology, Eur J Phycol, vol.850, pp.103-112, 2003.

A. Curson, B. T. Williams, B. J. Pinchbeck, L. P. Sims, A. B. Martínez et al., , p.852

D. Kumaresan, E. Mercadé, L. G. Spurgin, and O. Carrión, DSYB catalyses the 853 key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton, 2018.

, Nat Microbiol, vol.3, p.430

A. Gil-de-la-fuente, J. Godzien, S. Saugar, R. Garcia-carmona, and H. Badran, , p.856

D. S. Wishart, C. Barbas, and A. Otero, , 2019.

, Annotation Tool. J Proteome Res, vol.18, pp.797-802

M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, N. Garg et al., , p.859

J. Watrous, C. A. Kapono, T. Luzzatto-knaan, C. Porto, A. Bouslimani et al., , vol.860

M. J. Meehan, W. Liu, M. Crüsemann, P. D. Boudreau, and E. Esquenazi,

M. Calderón, R. D. Kersten, L. A. Pace, R. A. Quinn, and K. R. Duncan, , p.862

. Dj, R. G. Gavilan, K. Kleigrewe, T. Northen, R. J. Dutton et al., , p.863

B. Aigle, C. F. Michelsen, L. Jelsbak, C. Sohlenkamp, P. Pevzner et al., , vol.864

J. Mclean, J. Piel, B. T. Murphy, L. Gerwick, C. Liaw et al., , vol.865

M. Maansson, R. A. Keyzers, A. C. Sims, A. R. Johnson, A. M. Sidebottom et al., , p.866

A. Klitgaard, C. B. Larson, P. Boya, . Ca, D. Torres-mendoza et al., , vol.867

. Db, L. M. Marques, D. P. Demarque, E. Pociute, E. C. O'neill et al., Helfrich, vol.868

G. E. Ejn, E. Glukhov, F. Ryffel, H. Houson, and H. Mohimani, , p.869

. Jj, Y. Zeng, J. A. Vorholt, K. L. Kurita, P. Charusanti et al., , vol.870

L. Vuong, M. Elfeki, M. F. Traxler, N. Engene, N. Koyama et al., , vol.871

M. Rr, . Sj, S. Tomasi, S. Jenkins, V. Macherla et al., , p.872

P. G. Williams, J. Dai, R. Neupane, J. Gurr, A. Rodríguez et al., , p.873

K. Dorrestein, B. M. Duggan, J. Almaliti, P. Allard, P. Phapale et al., , vol.874

T. Alexandrov, M. Litaudon, J. Wolfender, J. E. Kyle, T. O. Metz et al., , p.875

D. Nguyen, D. Vanleer, P. Shinn, A. Jadhav, R. Müller et al., Liu, vol.876

X. Zhang, L. Knight, R. Jensen, P. R. Palsson, B. Ø. Pogliano et al., , p.877

M. Gutiérrez, N. P. Lopes, W. H. Gerwick, B. S. Moore, P. C. Dorrestein et al., Sharing and community curation of mass spectrometry data with Global 879, vol.878, 2016.

, Natural Products Social Molecular Networking, Nat Biotechnol, vol.34, pp.828-837

. Mc, B. Maclean, R. Burke, D. Amodei, D. L. Ruderman et al., , p.881

L. Gatto, B. Fischer, B. Pratt, J. Egertson, K. Hoff et al., , p.882

N. Shulman, B. Frewen, T. A. Baker, M. Brusniak, C. Paulse et al., , p.883

L. , K. K. Moulding, C. Seymour, S. L. Nuwaysir, L. M. Lefebvre et al., , p.884

J. Roark, P. Rainer, S. Detlev, T. Hemenway, and A. Huhmer, , p.885

B. , C. T. Holly, K. Eckels, J. Deutsch, E. W. Moritz et al., , p.886

M. Maccoss, D. L. Tabb, and P. Mallick, A cross-platform toolkit for mass 887 spectrometry and proteomics, Nat Biotechnol, vol.30, pp.918-920, 2012.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: 889 processing mass spectrometry data for metabolite profiling using nonlinear 890 peak alignment, matching, and identification, Anal Chem, vol.78, pp.779-787, 2006.

J. Chong, O. Soufan, C. Li, I. Caraus, S. Li et al., , 2018.

, 0: towards more transparent and integrative metabolomics 893 analysis, Nucleic Acids Res, vol.46, pp.486-494