D. C. Bradley, Chem. Rev, vol.89, p.1317, 1989.

S. Mishra and S. Daniele, Chem. Rev, vol.115, p.8379, 2015.

B. Liu, T. Roisnel, J. Guégan, J. Carpentier, and Y. Sarazin, Chem. Eur. J, vol.18, p.6289, 2012.

T. Heidemann and S. Mathur, Inorg. Chem, vol.56, p.234, 2017.

G. B. Deacon, P. C. Junk, G. J. Moxey, M. Guino-o, and K. Ruhlandt-senge, , p.4878, 2009.

E. L. Coz, V. Dorcet, T. Roisnel, S. Tobisch, J. Carpentier et al., Angew. Chem. Int. Ed, vol.57, p.11747, 2018.

K. G. Caulton, M. H. Chisholm, S. R. Drake, and W. E. Streib, Angew. Chem. Int. Ed, vol.29, p.1483, 1990.

W. A. Wojtczak, M. J. Hampden-smith, and E. N. Duesler, Inorg. Chem, p.6638, 1996.

S. R. Drake, W. E. Streib, K. Folting, M. H. Chisholm, and K. G. Caulton, Inorg. Chem, p.3205, 1992.

J. A. Darr, S. R. Drake, D. J. Williams, and A. M. Slawin, J. Chem. Soc., Chem. Commun, p.866, 1993.

P. Shao, D. J. Berg, and G. W. Bushnell, Can. J. Chem, p.797, 1995.

B. Freitag, P. Stegner, K. Thum, C. A. Fischer, and S. Harder, Eur. J. Inorg. Chem, 1938.

A. Staubitz, A. P. Robertson, and I. Manners, Chem. Rev, p.4079, 2010.

H. C. Johnson, T. N. Hooper, and A. S. Weller, Top. Organometal. Chem, p.153, 2015.

M. S. Hill, D. J. Liptrot, and C. Weetman, Chem. Soc. Rev, vol.45, p.972, 2016.

T. E. Stennett and S. Harder, Chem. Soc. Rev, vol.45, p.1112, 2016.

M. S. Hill, D. J. Liptrot, D. J. Macdougall, M. F. Mahon, and T. P. Robinson, Chem. Sci, issue.4, p.4212, 2013.

C. Bellini, J. Carpentier, S. Tobisch, and Y. Sarazin, Angew. Chem. Int. Ed, vol.54, p.7679, 2015.

C. Bellini, C. Orione, J. Carpentier, and Y. Sarazin, Angew. Chem. Int. Ed, vol.55, p.3744, 2016.

C. Bellini, T. Roisnel, J. Carpentier, S. Tobisch, and Y. Sarazin, Chem. Eur. J, vol.22, p.15733, 2016.

J. C. Mcdonald and G. M. Whitesides, Acc. Chem. Res, vol.35, p.491, 2002.

K. Matsumoto, S. Shimada, and K. Sato, Chem. Eur. J, vol.25, p.920, 2019.

K. Kuroda, A. Shimojima, K. Kawahara, R. Wakabayashi, Y. Tamura et al., Chem. Mater, vol.26, p.211, 2014.

Z. M. Michalska, Transition Met. Chem, vol.5, p.125, 1980.

Y. Satoh, M. Igarashi, K. Sato, and S. Shimada, , 1836.

J. Ka?mierczak, K. Kuci?ski, D. Lewandowski, and G. Hreczycho, Inorg. Chem, p.1201, 2019.

J. Chojnowski, S. Rubinsztajn, J. A. Cella, W. Fortuniak, M. Cypryk et al., Organometallics, vol.24, p.6077, 2005.

J. Chojnowski, W. Fortuniak, J. Kurjata, S. Rubinsztajn, and J. A. Cella, Macromolecules, vol.39, p.3802, 2006.

K. Matsumoto, K. V. Sajna, Y. Satoh, K. Sato, and S. Shimada, Angew. Chem. nt, vol.56, p.3168, 2017.

K. Matsumoto, Y. Oba, Y. Nakajima, S. Shimada, and K. Sato, Angew. Chem. Int. Ed, vol.57, p.4637, 2018.

T. J. Boyle, J. M. Sears, D. Perales, R. E. Cramer, P. Lu et al., Inorg. Chem, p.8806, 2018.

L. Yang, D. R. Powell, and R. P. Houser, Dalton Trans, p.955, 2007.

O. Michel, S. König, K. W. Törnroos, C. Maichle-mössmer, and R. Anwander, Chem. Eur. J, 2011.

B. A. Vaartstra, J. C. Huffman, W. E. Streib, and K. G. Caulton, Inorg. Chem, p.121, 1991.

, Couplings do not occur without barium (pre)catalyst

, With Ph3SiOH, dehydrocouplings are plagued by the formation of Ph3SiOSiPh3 generated upon Ba-promoted dehydration of the silanol

, 20:1 for 24 h at 25 °C only returned a 2:1 mixture of PhSiH2OSi(SiMe3)3 and PhSiHO{Si(SiMe3)3}2 after near-quantitative conversion of PhSiH3, vol.40

M. R. Crimmin, M. Arrowsmith, A. G. Barrett, I. J. Casely, M. S. Hill et al., J. Am. Chem. Soc, p.9670, 2009.

, Full Eyring analysis could not be performed, as we could not assess the intrinsic rate constant k owing to the uncertainty on the partial kinetic order in

. ?h-?-=, Uncertainty concerned ?S ? ; values of -16.8(5) and -4.3(5) cal?mol -1 ?K -1 were estimated assuming partial kinetic orders of 1 or 2 in [Ba]. These values are consistent with an associative mechanism, as might be expected for such Ae-mediated dehydrocouplings, vol.14

, )?10 -5 s -1 ) displayed reaction rates identical to those of these two Ba-amide precatalysts, vol.12, pp.22-28