O. Özgenç, Methodology in improving antibiotic implementation policies

, Methodol, vol.6, pp.143-153, 2016.

A. Borges, A. Abreu, C. Dias, M. Saavedra, F. Borges et al., New perspectives on 477 the use of phytochemicals as an emergent strategy to control bacterial infections 478 including biofilms, Molecules, vol.21, p.877, 2016.

G. Shrestha, L. L. St, and . Clair, Lichens: a promising source of antibiotic and anticancer 480 drugs, Phytochem. Rev, vol.12, pp.229-244, 2013.

J. Boustie and M. Grube, Lichens-a promising source of bioactive secondary metabolites, p.482

, Plant Genet. Resour. Charact. Util, vol.3, pp.273-287, 2005.

V. Shukla, G. P. Joshi, and M. S. Rawat, Lichens as a potential natural source of bioactive 484 compounds: a review, Phytochem. Rev, vol.9, pp.303-314, 2010.

M. Ba?korová, R. Jend?elovský, M. Kello, M. Ba?kor, J. Mike? et al., Lichen 487 secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 488 human cancer cell lines, Toxicol. Vitro Int. J. Publ. Assoc. BIBRA, vol.26, pp.462-468, 2012.

A. Sweidan, M. Chollet-krugler, P. Van-de-weghe, A. Chokr, S. Tomasi et al., , p.491

L. Mallet and . Bousarghin, Design, synthesis and biological evaluation of potential 492 antibacterial butyrolactones, Bioorg. Med. Chem, vol.24, 2016.

K. Y. How, K. P. Song, and K. G. Chan, Porphyromonas gingivalis: An Overview of 495

, Periodontopathic Pathogen below the Gum Line, Front. Microbiol, vol.7, 2016.

P. P. Pita, J. A. Rodrigues, C. Ota-tsuzuki, T. F. Miato, E. G. Zenobio et al.,

C. Figueiredo, S. A. Gonçalves, A. Gehrke, J. A. Cassoni, and . Shibli, Oral Streptococci, p.499

, Biofilm Formation on Different Implant Surface Topographies, vol.500, p.159625, 2015.

H. M. Ng, L. X. Kin, S. G. Dashper, N. Slakeski, C. A. Butler et al., Bacterial 502 interactions in pathogenic subgingival plaque, Microb. Pathog, vol.94, pp.60-69, 2016.

F. Guilhelmelli, N. Vilela, P. Albuquerque, L. Da-s.-derengowski, I. Silva-pereira et al.,

. Kyaw, Antibiotic development challenges: the various mechanisms of action of 506 antimicrobial peptides and of bacterial resistance, Front. Microbiol, vol.4, 2013.

J. Van-heijenoort, Recent advances in the formation of the bacterial peptidoglycan 509 monomer unit, Nat. Prod. Rep, vol.18, pp.503-519, 2001.

A. Typas, M. Banzhaf, C. A. Gross, and W. Vollmer, From the regulation of peptidoglycan 511 synthesis to bacterial growth and morphology, Nat. Rev. Microbiol, vol.10, pp.123-136, 2011.

J. G. Hurdle, A. J. O'neill, I. Chopra, and R. E. Lee, Targeting bacterial membrane function: 514 an underexploited mechanism for treating persistent infections, Nat. Rev. Microbiol, vol.9, pp.62-75, 2011.

B. Kouidhi, Y. M. Qurashi, and K. Chaieb, Drug resistance of bacterial dental biofilm 517 and the potential use of natural compounds as alternative for prevention and treatment, p.518

, Microb. Pathog, vol.80, pp.39-49, 2015.

K. Lewis, Platforms for antibiotic discovery, Nat. Rev. Drug Discov, vol.12, pp.371-520, 2013.

S. Noël, L. Guillon, I. J. Schalk, and G. L. Mislin, Synthesis of Fluorescent Probes Based 522 on the Pyochelin Siderophore Scaffold, Org. Lett, vol.13, pp.844-847, 2011.

J. H. Park, J. Lee, H. Um, B. Chang, and S. Lee, A periodontitis-associated 525 multispecies model of an oral biofilm, J. Periodontal Implant Sci, vol.44, 2014.

S. Leejae, P. W. Taylor, and S. P. Voravuthikunchai, Antibacterial mechanisms of 528 rhodomyrtone against important hospital-acquired antibiotic-resistant pathogenic 529 bacteria, J. Med. Microbiol, vol.62, pp.78-85, 2013.

C. Zhao, A. Fernandez, N. Avlonitis, G. Velde, M. Bradley et al.,

. Vendrell, Searching for the Optimal Fluorophore to Label Antimicrobial Peptides, ACS 532 Comb. Sci, vol.18, pp.689-696, 2016.

M. Matija?i?, V. Kos, K. Nuji?, S. ?u?i?, J. Padovan et al.,

D. Mildner, V. E. Verbanac, and . Haber, Fluorescently labeled macrolides as a tool for 535 monitoring cellular and tissue distribution of azithromycin, Pharmacol. Res, vol.66, pp.332-342, 2012.

J. K. Tripathi, M. Kathuria, A. Kumar, K. Mitra, and J. K. Ghosh, An unprecedented 538 alteration in mode of action of IsCT resulting its translocation into bacterial cytoplasm 539 and inhibition of macromolecular syntheses, Sci. Rep, vol.5, 2015.

J. A. Tennessen, Molecular evolution of animal antimicrobial peptides: widespread 542 moderate positive selection, J. Evol. Biol, vol.18, pp.1387-1394, 2005.

D. J. Arndt-jovin and T. M. Jovin, Fluorescence labeling and microscopy of DNA, Methods 545 Cell Biol, vol.30, pp.417-448, 1989.

B. Gökals?n and N. C. Sesal, Lichen secondary metabolite evernic acid as potential quorum 547 sensing inhibitor against <i>Pseudomonas aeruginosa<i/>, World J. Microbiol

, Biotechnol, vol.32, 2016.

N. Malanovic and K. Lohner, Gram-positive bacterial cell envelopes: The impact on the 550 activity of antimicrobial peptides, Biochim. Biophys. Acta, vol.1858, pp.936-946, 2016.

V. K. Gupta, S. Verma, S. Gupta, A. Singh, A. Pal et al.,

M. P. Singh and . Darokar, Membrane-damaging potential of natural L-(-)-usnic acid in 554

, Staphylococcus aureus, Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin

. Microbiol, , vol.31, pp.3375-3383, 2012.

G. Shrestha, A. Thompson, R. Robison, and L. L. St-clair, Letharia vulpina, a vulpinic acid 557 containing lichen, targets cell membrane and cell division processes in methicillin-558 resistant Staphylococcus aureus, Pharm. Biol, vol.54, pp.413-418, 2016.