S. Rizvi, G. J. Gores, D. Pathogenesis, . Management, and . Cholangiocarcinoma, Gastroenterology, vol.145, pp.1215-1229, 2013.

P. Bertuccio, M. Malvezzi, G. Carioli, D. Hashim, P. Boffetta et al., Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma, J. Hepatol, vol.71, pp.104-114, 2019.

B. Sripa, C. Pairojkul, and . Cholangiocarcinoma, Lessons from Thailand, vol.24, pp.349-356, 2008.

G. L. Tyson and H. B. El-serag, Risk Factors of Cholangiocarcinoma, Hepatology, vol.54, pp.173-184, 2011.

Y. H. Shaib, H. B. El-serag, J. A. Davila, R. Morgan, and K. A. Mcglynn, Risk factors of intrahepatic cholangiocarcinoma in the United States: A case-control study, Gastroenterology, vol.128, pp.620-626, 2005.

J. J. Lee, S. T. Schindera, H. Jang, S. Fung, and T. K. Kim, Cholangiocarcinoma and its mimickers in primary sclerosing cholangitis, vol.42, pp.2898-2908, 2017.

T. M. Welzel, B. I. Graubard, S. Zeuzem, H. B. El-serag, J. A. Davila et al., Metabolic syndrome increases the risk of primary liver cancer in the United States: A study in the SEER-Medicare database, Hepatology, vol.54, pp.463-471, 2011.

W. R. Jarnagin, Y. Fong, E. C. Burke, J. Bodniewicz, M. Youssef et al., Staging, Resectability, and Outcome in 225 Patients with Hilar Cholangiocarcinoma, Ann. Surg, vol.234, pp.507-519, 2001.

J. Bridgewater, P. R. Galle, S. A. Khan, J. M. Llovet, J. Park et al., Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma, J. Hepatol, vol.60, pp.1268-1289, 2014.

L. Sulpice, M. Desille, B. Turlin, A. Fautrel, K. Boudjema et al., Gene expression profiling of the tumor microenvironment in human intrahepatic cholangiocarcinoma, Genom. Data, vol.7, pp.229-232, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259227

L. Sulpice, M. Rayar, M. Desille, B. Turlin, A. Fautrel et al., Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma, Hepatology, vol.58, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01068717

L. Fabris, M. J. Perugorria, J. Mertens, N. K. Björkström, T. Cramer et al., The tumour microenvironment and immune milieu of cholangiocarcinoma, Liver Int, vol.39, pp.63-78, 2019.

D. Høgdall, M. Lewi?ska, and J. B. Andersen, Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma, Trends Cancer, vol.4, pp.239-255, 2018.

L. Rimassa, N. Personeni, A. Aghemo, and A. Lleo, The immune milieu of cholangiocarcinoma: From molecular pathogenesis to precision medicine, J. Autoimmun, vol.100, pp.17-26, 2019.

J. Huynh, N. Etemadi, F. Hollande, M. Ernst, M. Buchert et al., The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin. Cancer Boil, vol.45, pp.13-22, 2017.

X. W. Yang, L. Li, G. J. Hou, X. Z. Yan, Q. G. Xu et al., STAT3 overexpression promotes metastasis in intrahepatic cholangiocarcinoma and correlates negatively with surgical outcome, Oncotarget, vol.8, pp.7710-7721, 2017.

A. Clapéron, M. Mergey, T. H. Ho-bouldoires, D. M. Vignjevic, D. Wendum et al., EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition, J. Hepatol, vol.61, pp.325-332, 2014.

A. Menakongka and T. Suthiphongchai, Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion, World J. Gastroenterol, vol.16, pp.713-722, 2010.

F. Geisler and M. Strazzabosco, Emerging roles of Notch signaling in liver disease, Hepatology, vol.61, pp.382-392, 2015.

S. Sekiya and A. Suzuki, Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes, J. Clin. Investig, vol.122, pp.3914-3918, 2012.

A. Omenetti, S. Choi, G. Michelotti, and A. M. Diehl, Hedgehog signaling in the liver, J. Hepatol, vol.54, pp.366-373, 2011.

A. Gonnissen, S. Isebaert, and K. Haustermans, Targeting the Hedgehog signaling pathway in cancer: Beyond Smoothened, Oncotarget, vol.6, pp.13899-13913, 2015.

N. Razumilava, S. A. Gradilone, R. L. Smoot, J. C. Mertens, S. F. Bronk et al., Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma, J. Hepatol, vol.60, pp.599-605, 2014.

M. El-khatib, A. Kalnytska, V. Palagani, U. Kossatz, M. P. Manns et al., Inhibition of hedgehog signaling attenuates carcinogenesisin vitroand increases necrosis of cholangiocellular carcinoma, Hepatology, vol.57, pp.1035-1045, 2013.

A. Fujimoto, M. Furuta, Y. Shiraishi, K. Gotoh, Y. Kawakami et al., Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity, Nat. Commun, vol.6, p.6120, 2015.

D. Sia, B. Losic, A. Moeini, L. Cabellos, K. Hao et al., Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma, Nat. Commun, vol.6, 2015.

H. Nakamura, Y. Arai, Y. Totoki, T. Shirota, A. Elzawahry et al., Genomic spectra of biliary tract cancer, Nat. Genet, vol.47, pp.1003-1010, 2015.

S. Zou, J. Li, H. Zhou, C. Frech, X. Jiang et al., Mutational landscape of intrahepatic cholangiocarcinoma, Nat. Commun, vol.5, 2014.

C. K. Ong, C. Subimerb, C. Pairojkul, S. Wongkham, I. Cutcutache et al., Exome sequencing of liver fluke-associated cholangiocarcinoma, Nat. Genet, vol.44, pp.690-693, 2012.

Q. Gao, Y. Zhao, X. Wang, W. Guo, S. Gao et al., Activating Mutations in PTPN3 Promote Cholangiocarcinoma Cell Proliferation and Migration and Are Associated with Tumor Recurrence in Patients, Gastroenterology, vol.146, pp.1397-1407, 2014.

D. Bergeat, A. Fautrel, B. Turlin, A. Merdrignac, M. Rayar et al., Impact of stroma LOXL2 overexpression on the prognosis of intrahepatic cholangiocarcinoma, J. Surg. Res, vol.203, pp.441-450, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01341595

L. Sulpice, M. Rayar, B. Turlin, E. Boucher, P. Bellaud et al., Epithelial cell adhesion molecule is a prognosis marker for intrahepatic cholangiocarcinoma, J. Surg. Res, vol.192, pp.117-123, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069630

M. J. Borad, M. D. Champion, J. B. Egan, W. S. Liang, R. Fonseca et al., Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma, PLoS Genet, vol.10, 2014.

D. Golub, N. Iyengar, S. Dogra, T. Wong, D. Bready et al., Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics, Front. Oncol, vol.9, p.417, 2019.

C. J. David and J. Massagué, Contextual determinants of TGF? action in development, immunity and cancer, Nat. Rev. Mol. Cell Boil, vol.19, pp.419-435, 2018.

J. Wang, N. Shao, X. Ding, B. Tan, Q. Song et al., Crosstalk between transforming growth factor-? signaling pathway and long non-coding RNAs in cancer, Cancer Lett, vol.370, pp.296-301, 2016.

C. H. Heldin and A. Moustakas, Role of Smads in TGFbeta signaling, Cell Tissue Res, vol.347, pp.21-36, 2012.

A. Chaikuad and A. N. Bullock, Structural Basis of Intracellular TGF-? Signaling: Receptors and Smads. Cold Spring Harb, Perspect. Boil, 2016.

R. Derynck and E. H. Budi, Specificity, versatility, and control of TGF-? family signaling, Sci. Signal, vol.12, p.5183, 2019.

K. Miyazono, Y. Katsuno, D. Koinuma, S. Ehata, and M. Morikawa, Intracellular and extracellular TGF-? signaling in cancer: Some recent topics, Front. Med, vol.12, pp.387-411, 2018.

J. Tang, C. C. Gifford, R. Samarakoon, and P. J. Higgins, Deregulation of Negative Controls on TGF-?1 Signaling in Tumor Progression, Cancers, vol.10, p.159, 2018.

K. Luo, Signaling Cross Talk between TGF-?/Smad and Other Signaling Pathways. Cold Spring Harb, Perspect. Boil, vol.9, 2017.

L. Fouassier, M. Marzioni, M. B. Afonso, S. Dooley, K. Gaston et al., Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance, Liver Int, pp.43-62, 2019.

M. Nishio, K. Sugimachi, H. Goto, J. Wang, T. Morikawa et al., Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice, Proc. Natl. Acad. Sci, vol.113, 2016.

D. Yamada, S. Kobayashi, H. Wada, K. Kawamoto, S. Marubashi et al., Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer, Eur. J. Cancer, vol.49, pp.1725-1740, 2013.

R. Bataller and D. A. Brenner, Liver fibrosis, J. Clin. Investig, vol.115, pp.209-218, 2005.

C. Coulouarn and B. Clément, Stellate cells and the development of liver cancer: Therapeutic potential of targeting the stroma, J. Hepatol, vol.60, pp.1306-1309, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952891

L. Caja, F. Dituri, S. Mancarella, D. Caballero-diaz, A. Moustakas et al., Fabregat, I. TGF-? and the Tissue Microenvironment: Relevance in Fibrosis and Cancer, Int. J. Mol. Sci, vol.19, 2018.

Y. Zhang, P. B. Alexander, and X. F. Wang, TGF-beta Family Signaling in the Control of Cell Proliferation and Survival, Cold Spring Harb. Perspect. Biol, vol.9, 2017.

N. Schuster and K. Krieglstein, Mechanisms of TGF-?-mediated apoptosis, Cell and Tissue Research, vol.307, pp.1-14, 2002.

M. Yamashita, K. Fatyol, C. Jin, X. Wang, Z. Liu et al., TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-?, Mol. Cell, vol.31, pp.918-924, 2008.

H. Bender, Z. Wang, and N. Schuster, Krieglstein, K. TIEG1 facilitates transforming growth factor-beta -mediated apoptosis in the oligodendroglial cell line OLI-neu, J. Neurosci. Res, vol.75, pp.344-352, 2004.

C. W. Jang, C. H. Chen, C. C. Chen, J. Y. Chen, Y. H. Su et al., TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase, Nat. Cell Biol, vol.4, pp.51-58, 2002.

Y. Tsubakihara and A. Moustakas, Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor ?, Int. J. Mol. Sci, vol.19, p.3672, 2018.

N. M. Aiello and Y. Kang, Context-dependent EMT programs in cancer metastasis, J. Exp. Med, vol.216, pp.1016-1026, 2019.

X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol.527, pp.525-530, 2015.

K. R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance, Nature, vol.527, pp.472-476, 2015.

A. Singh and J. Settleman, EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer, Oncogene, vol.29, pp.4741-4751, 2010.

A. Malfettone, J. Soukupova, E. Bertran, E. Crosas-molist, R. Lastra et al., Transforming growth factor-?-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma, Cancer Lett, vol.392, pp.39-50, 2017.

A. Moustakas and C. Heldin, Mechanisms of TGF?-Induced Epithelial-Mesenchymal Transition, J. Clin. Med, vol.5, 2016.

C. Thepmalee, A. Panya, M. Junking, T. Chieochansin, and P. Yenchitsomanus, Inhibition of IL-10 and TGF-? receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells, Hum. Vaccines Immunother, vol.14, pp.1423-1431, 2018.

G. Landskron, M. De-la-fuente, P. Thuwajit, C. Thuwajit, and M. A. Hermoso, Chronic Inflammation and Cytokines in the Tumor Microenvironment, J. Immunol. Res, pp.1-19, 2014.

T. Shimizu, S. Yokomuro, Y. Mizuguchi, Y. Kawahigashi, Y. Arima et al., Effect of transforming growth factor-?1 on human intrahepatic cholangiocarcinoma cell growth, World J. Gastroenterol, vol.12, pp.6316-6324, 2006.

C. Raggi, M. Correnti, A. Sica, J. B. Andersen, V. Cardinale et al., Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages, J. Hepatol, vol.66, pp.102-115, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01414693

Y. Kitano, H. Okabe, Y. I. Yamashita, S. Nakagawa, Y. Saito et al., Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma, Br. J. Cancer, vol.118, pp.171-180, 2018.

H. Hasita, Y. Komohara, H. Okabe, T. Masuda, K. Ohnishi et al., Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma, Cancer Sci, vol.101, pp.1913-1919, 2010.

J. J. Huang and G. C. Blobe, Dichotomous Roles of TGF-? in Human Cancer, Biochem. Soc. Trans, vol.44, pp.1441-1454, 2016.

J. Massague, TGFbeta in Cancer. Cell, vol.134, pp.215-230, 2008.

Y. Zen, K. Harada, M. Sasaki, T. Chen, M. Chen et al., Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-?1 by overexpression of cyclin D1, Lab. Investig, vol.85, pp.572-581, 2005.

I. Fabregat and D. Caballero-díaz, Transforming Growth Factor-?-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis, Front. Oncol, vol.8, p.357, 2018.

J. Seoane and R. R. Gomis, TGF-? Family Signaling in Tumor Suppression and Cancer Progression, Cold Spring Harb. Perspect. Boil, vol.9, 2017.

C. R. Churi, R. Shroff, Y. Wang, A. Rashid, H. C. Kang et al., Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications, PLoS ONE, vol.9, 2014.

X. Yan, W. Zhang, B. Zhang, H. Liang, W. Zhang et al., Inactivation of Smad4 is a prognostic factor in intrahepatic cholangiocarcinoma, Chin. Med. J, vol.126, pp.3039-3043, 2013.

Y. K. Kang, W. H. Kim, and J. J. Jang, Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma, Hum. Pathol, vol.33, pp.877-883, 2002.

J. Vaquero, N. Guedj, A. Clapéron, T. H. Ho-bouldoires, V. Paradis et al., Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks, J. Hepatol, vol.66, pp.424-441, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377000

Y. Sato, K. Harada, K. Itatsu, H. Ikeda, Y. Kakuda et al., Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-?1/Snail Activation Aggravates Invasive Growth of Cholangiocarcinoma, Am. J. Pathol, vol.177, pp.141-152, 2010.

P. Sritananuwat, N. Sueangoen, P. Thummarati, K. Islam, and T. Suthiphongchai, Blocking ERK1/2 signaling impairs TGF-?1 tumor promoting function but enhances its tumor suppressing role in intrahepatic cholangiocarcinoma cells, Cancer Cell Int, vol.17, 2017.

A. M. Lustri, S. Di-matteo, A. Fraveto, D. Costantini, A. Cantafora et al., TGF-? signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures, PLoS ONE, vol.12, 2017.

S. H. Yang, H. Y. Lin, C. A. Changou, C. H. Chen, Y. R. Liu et al., Integrin beta3 and LKB1 are independently involved in the inhibition of proliferation by lovastatin in human intrahepatic cholangiocarcinoma, Oncotarget, vol.7, pp.362-373, 2016.

Z. Shuang, W. Wu, J. Xu, G. Lin, Y. Liu et al., Transforming growth factor-?1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma, Cancer Lett, vol.354, pp.320-328, 2014.

K. Duangkumpha, A. Techasen, W. Loilome, N. Namwat, R. Thanan et al., BMP-7 blocks the effects of TGF-?-induced EMT in cholangiocarcinoma. Tumor Boil, vol.35, pp.9667-9676, 2014.

W. Liu, J. Chen, C. Hsu, Y. Li, Y. Chen et al., A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B Virus X and hepatitis C virus core protein in liver, Hepatology, vol.56, pp.2268-2276, 2012.

C. Yan, Q. Yang, H. Shen, J. M. Spitsbergen, and Z. Gong, Chronically high level of tgfb1a induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish, Oncotarget, vol.8, pp.77096-77109, 2017.

Y. Lin, B. Zhang, Y. Lu, H. Liang, X. Ai et al., JNK inhibitor SP600125 enhances TGF-?-induced apoptosis of RBE human cholangiocarcinoma cells in a Smad-dependent manner, Mol. Med. Rep, vol.8, pp.1623-1629, 2013.

X. Lin, M. Liang, and X. Feng, Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-? Signaling, J. Boil. Chem, vol.275, pp.36818-36822, 2000.

B. Yuan, J. Liu, J. Cao, Y. Yu, H. Zhang et al., PTPN3 acts as a tumor suppressor and boosts TGF-beta signaling independent of its phosphatase activity, EMBO J, 2019.

H. Bunch, Gene regulation of mammalian long non-coding RNA, Mol. Genet. Genomics, vol.293, pp.1-15, 2018.

J. Yuan, F. Yang, F. Wang, J. Ma, Y. Guo et al., A Long Noncoding RNA Activated by TGF-? Promotes the Invasion-Metastasis Cascade in Hepatocellular Carcinoma, Cancer Cell, vol.25, pp.666-681, 2014.

D. Zhang, H. Li, X. Jiang, L. Cao, Z. Wen et al., Role of AP-2? and MAPK7 in the regulation of autocrine TGF-?/miR-200b signals to maintain epithelial-mesenchymal transition in cholangiocarcinoma, J. Hematol. Oncol, vol.10, 2017.

C. Huang, A. Aihara, Y. Iwagami, T. Yu, R. Carlson et al., Expression of Transforming Growth Factor ?1 Promotes Cholangiocarcinoma Development and Progression, Cancer Lett, vol.380, pp.153-162, 2016.

P. Qiao, G. Li, W. Bi, L. Yang, L. Yao et al., microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway, BMC Cancer, vol.15, p.469, 2015.

H. Wang, C. Li, Z. Jian, Y. Ou, and J. Ou, TGF-?1 Reduces miR-29a Expression to Promote Tumorigenicity and Metastasis of Cholangiocarcinoma by Targeting HDAC4, PLoS ONE, vol.10, 2015.

Y. Ota, K. Takahashi, S. Otake, Y. Tamaki, M. Okada et al., Extracellular vesicle-encapsulated miR-30e suppresses cholangiocarcinoma cell invasion and migration via inhibiting epithelial-mesenchymal transition, Oncotarget, vol.9, pp.16400-16417, 2018.

G. Angenard, A. Merdrignac, C. Louis, J. Edeline, and C. Coulouarn, Expression of long non-coding RNA ANRIL predicts a poor prognosis in intrahepatic cholangiocarcinoma, Dig. Liver Dis, vol.51, pp.1337-1343, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02152868

A. Merdrignac, G. Angenard, C. Allain, K. Petitjean, D. Bergeat et al., A novel transforming growth factor beta-induced long noncoding RNA promotes an inflammatory microenvironment in human intrahepatic cholangiocarcinoma, Hepatol. Commun, vol.2, pp.254-269, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744444

E. Arnaiz, C. Sole, L. Manterola, L. Iparraguirre, D. Otaegui et al., CircRNAs and cancer: Biomarkers and master regulators, Semin. Cancer Biol, 2018.

J. Salzman, Circular RNA Expression: Its Potential Regulation and Function, Trends Genet, vol.32, pp.309-316, 2016.

Z. Zhang, T. Yang, and J. Xiao, Circular RNAs: Promising Biomarkers for Human Diseases, vol.34, pp.267-274, 2018.

S. J. Conn, K. A. Pillman, J. Toubia, V. M. Conn, M. Salmanidis et al., The RNA Binding Protein Quaking Regulates Formation of circRNAs, Cell, vol.160, pp.1125-1134, 2015.

R. J. Akhurst and A. Hata, Targeting the TGF? signalling pathway in disease, Nat. Rev. Drug Discov, vol.11, pp.790-811, 2012.

S. K. Halder, R. D. Beauchamp, and P. K. Datta, A Specific Inhibitor of TGF-? Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers, Neoplasia, vol.7, pp.509-521, 2005.

G. Giannelli, E. Villa, and M. Lahn, Transforming Growth Factor-as a Therapeutic Target in Hepatocellular Carcinoma, Cancer Res, vol.74, pp.1890-1894, 2014.

R. Kelley, E. Gane, E. Assenat, J. Siebler, P. Galle et al., A Phase 2 Study of Galunisertib (TGF-?1 Receptor Type I Inhibitor) and Sorafenib in Patients With Advanced Hepatocellular Carcinoma, Clin. Transl. Gastroenterol, vol.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02586941

Y. Chen, C. Di, X. Zhang, J. Wang, F. Wang et al., Transforming growth factor beta signaling pathway: A promising therapeutic target for cancer, J. Cell Physiol, 2019.

H. Ling, E. Roux, D. Hempel, J. Tao, M. Smith et al., Transforming Growth Factor ? Neutralization Ameliorates Pre-Existing Hepatic Fibrosis and Reduces Cholangiocarcinoma in Thioacetamide-Treated Rats, PLoS ONE, vol.8, 2013.

E. Batlle and J. Massagué, Transforming Growth Factor-? Signaling in Immunity and Cancer. Immunity, vol.50, pp.924-940, 2019.

Y. Lan, D. Zhang, C. Xu, K. W. Hance, B. Marelli et al., Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta, Sci. Transl. Med, vol.10, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI