M. R. Bryce, Tetrathiafulvalene as ?-electron donors for intramolecular charge-transfer Materials, Adv. Mater, vol.11, pp.11-23, 1999.

J. Yamada, T. Sugimoto, and . Chemistry, Fundamentals and Applications of Tetrathiafulvalene, 2004.

T. Otsubo and K. Takimiya, Recent synthetic advances of tetrathiafulvalene-based organic conductors, Bull. Chem. Soc. Jpn, vol.77, pp.43-58, 2004.

E. Coronado and P. Day, Magnetic molecular conductors, Chem. Rev, vol.104, pp.5419-5448, 2004.

D. Lorcy, N. Bellec, M. Fourmigué, and N. Avarvari, Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts, Coord. Chem. Rev, vol.253, pp.1398-1438, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00366577

M. Shatruk and L. Ray, Ligands derived from tetrathiafulvalene: Building blocks for multifunctional materials, Dalton Trans, vol.39, pp.11105-11121, 2010.

P. Batail, Introduction: Molecular conductors, Chem. Rev, vol.104, pp.4887-4890, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00084464

T. K. Hansen, T. Jørgensen, P. C. Stein, and J. Becher, Crown ether derivatives of tetrathiafulvalene, J. Org. Chem, vol.57, pp.6403-6409, 1992.

P. D. Beer, P. A. Gale, and G. Z. Chen, Electrochemical molecular recognition: Pathways between complexation and signalling, J. Chem. Soc. Dalton Trans, vol.12, pp.1897-1910, 1999.

P. V. Bernhardt and E. G. Moore, Functionalized macrocyclic compounds: Potential sensors of small molecules and ions, Aust. J. Chem, vol.56, pp.239-258, 2003.

H. Y. Lu, W. Xu, D. Q. Zhang, C. F. Chen, and D. B. Zhu, A novel multisignaling optical-electrochemical chemosensor for anions based on tetrathiafulvalene, Org. Lett, vol.7, pp.4629-4632, 2005.

K. L. Mccall, A. Morandeira, J. Durrant, L. J. Yellowlees, and N. Robertson, Characterisation of a ruthenium bipyridyl dye showing a long-lived charge-separated state on TiO 2 in the presence of I ? /I 3 ? . Dalton Trans, vol.39, pp.4138-4145, 2010.

S. Wenger, P. Bouit, Q. L. Chen, J. Teuscher, D. D. Censo et al., Efficient electron transfer and sensitizer regeneration in stable ?-extended tetrathaifulvalene-sensitized solar cells, J. Am. Chem. Soc, vol.132, pp.5164-5169, 2010.

N. A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics, Science, vol.309, pp.391-392, 2005.

W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature, vol.442, pp.759-765, 2006.

C. Train, R. Gheorghe, V. Krstic, L. Chamoreau, N. S. Ovanesyan et al., Strong magneto-chiral dichroism in enantiopure chiral ferromagnets, Nat. Mater, vol.7, pp.729-734, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356250

L. Ouahab and T. Enoki, Multiproperty molecular materials: TTF-based conducting and magnetic molecular materials, Eur. J. Inorg. Chem, pp.933-941, 2004.

A. Kobayashi, E. Fujiwara, and H. Kobayashi, Single-component molecular metals with extended-TTF dithiolate ligands, Chem. Rev, vol.104, pp.5243-5264, 2004.

T. Enoki and A. Miyasaki, Magnetic TTF-based charge-transfer complexes, Chem. Rev, vol.104, pp.5449-5478, 2004.

F. Pointillart, S. Golhen, and O. Cador, Ouahab, L. 3d and 4d coordination complexes and coordination polymers involving electroactive tetrathiafulvalene containing ligands, Comptes Rendus Chimie, vol.16, pp.679-687, 2013.

F. Pointillart, Y. Le-gal, S. Golhen, O. Cador, and L. Ouahab, First paramagnetic 4d transition-metal complex with a redox-active tetrathiafulvalene derivative
URL : https://hal.archives-ouvertes.fr/hal-01151568

, Inorg. Chem, vol.47, pp.9730-9732, 2008.

S. Rabaca and M. Almeida, Dithiolene complexes containing N coordinating groups and corresponding tetrathiafulvalene donors, Coord. Chem. Rev, vol.254, pp.1493-1508, 2010.

F. Pointillart, S. Golhen, O. Cador, and L. Ouahab, Paramagnetic 3d coordination complexes involving redox-active tetrathiafulvalene derivatives: An efficient approach to elaborate multi-properties materials, Dalton Trans, vol.42, 1949.
URL : https://hal.archives-ouvertes.fr/hal-00811427

Y. Huang, P. Huo, M. Shao, J. Yin, W. Shen et al., A new type of charge-transfer salts based on tetrathiafulvalene-tetracarboxylate coordination polymers and methyl viologen, Inorg. Chem, vol.53, pp.3480-3487, 2014.

S. Faulkner, B. P. Burton-pye, T. Khan, L. R. Martin, S. D. Wray et al., Interaction between tetrathiafulvalene carboxylic acid and ytterbium DO3A: Solution state self-assembly of a ternary complex which is luminescent in the near IR, Chem. Commun, vol.16, pp.1668-1669, 2002.

S. J. Pope, B. P. Burton-pye, R. Berridge, T. Khan, P. Skabara et al., Self-assembly of luminescent ternary complexes between seven-coordinate lanthanide(III) complexes and chromophore bearing carboxylates and phosphonates, pp.2907-2912, 2006.

F. Pointillart, Y. Le-gal, S. Golhen, O. Cador, L. Ouahab et al., III) complex involving tetrathiafulvalene-amido-2-pyrimidine?1-oxide as a ligand, Inorg. Chem, vol.48, pp.4631-4633, 2009.

F. Pointillart, B. Le-guennic, S. Golhen, O. Cador, O. Maury et al., High nuclearity complexes of lanthanide involving tetrathiafulvalene ligands: Structural, magnetic, and photophysical properties, Inorg. Chem, vol.52, pp.1610-1620, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00819296

D. N. Woodruff, R. E. Winpenny, and R. A. Layfield, Lanthanide single-molecule magnets, Chem. Rev, vol.113, pp.5110-5148, 2013.

F. Pointillart, O. Cador, B. Le-guennic, and L. Ouahab, Uncommon lanthanide ions in purely 4f single molecule magnets, Coord. Chem. Rev, vol.346, pp.150-175, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544463

P. Zhang, Y. Guo, and J. Tang, Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies, Coord. Chem. Rev, vol.257, pp.1728-1763, 2013.

S. T. Liddle and J. Van-slageren, Improving f-element single molecule magnets, Chem. Soc. Rev, vol.44, pp.6655-6669, 2015.

Y. Meng, S. Jiang, B. Wang, and S. Gao, Understanding the magnetic anisotropy toward single-ion magnets, Acc. Chem. Res, vol.49, pp.2381-2389, 2016.

J. Liu, Y. Chen, and M. Tong, Symmetry strategies for high performance lanthanide-based single-molecule magnets, Chem. Soc. Rev, vol.47, pp.2431-2453, 2018.

S. K. Gupta and R. Murugavel, Enriching lanthanide single-ion magnetism through symmetry and axiality, Chem. Commun, vol.54, pp.3685-3696, 2018.

Z. Zhu, M. Guo, X. Li, and J. Tang, Molecular magnetism of lanthanide: Advances and perspectives, Coord. Chem. Rev, vol.378, pp.350-364, 2019.

F. Guo, A. K. Bar, and R. A. Layfield, Main group chemistry at the interface with molecular magnetism, Chem. Rev, 2019.

D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00012648

L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nat. Mater, vol.7, pp.179-186, 2008.

M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero et al., Magnetic memory of a single-molecule quantum magnet wired to a gold surface, Nat. Mater, vol.8, pp.194-197, 2009.

M. N. Leuenberger and D. Loss, Quantum computing in molecular magnets, Nature, vol.410, pp.789-793, 2001.

J. Lehmann, A. Gaita-arino, E. Coronado, and D. Loss, Spin qubits with electrically gated polyoxometallate molecules, Nat. Nanotechnol, vol.2, pp.312-317, 2007.

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system, Nat. Nanotechnol, vol.8, pp.165-169, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859871

F. Gao, L. Cui, W. Liu, L. Hu, Y. Zhong et al., Seven-coordinate lanthanide sandwich-type complexes with a tetrathiafulvalene-fused schiff base ligand, Inorg. Chem, vol.52, pp.11164-11172, 2013.

F. Pointillart, B. Le-guennic, O. Maury, S. Golhen, O. Cador et al., Lanthnaide dinuclear complexes involving tetrathiafulvalene-3-pyridine-N-oxide ligand: Semiconductor radical salt, magnetic, and photophysical studies, Inorg. Chem, vol.52, pp.1398-1408, 2013.

F. Pointillart, J. Jung, R. Berraud-pache, B. Le-guennic, V. Dorcet et al., Luminescence and single-molecule magnet behavior in lanthanide complexes invlving a tetrathiafulvalene-fused dipyridophenazine ligand, Inorg. Chem, vol.54, pp.5384-5397, 2015.

F. Gao, X. Zhang, L. Cui, K. Deng, Q. Zeng et al., Tetrathiafulvalene-supported triple-decker phthalocyaninato dysprosium(III) complex: Synthesis, properties and surface assembly, Sci. Rep, vol.4, pp.5928-5935, 2014.

F. Pointillart, B. Le-guennic, S. Golhen, O. Cador, O. Maury et al., A redox-active luminescent ytterbium based single molecule magnet, Chem. Commun, vol.49, pp.615-617, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00808985

K. Soussi, J. Jung, F. Pointillart, B. Le-guennic, B. Lefeuvre et al., Magnetic and photo-physical inverstigations into Dy III and Yb III complexes involving tetrathiafulvalene ligand, Inorg. Chem. Front, vol.2, pp.1105-1117, 2015.

F. Pointillart, B. Le-guennic, O. Cador, O. Maury, and L. Ouahab, Lanthanide ion and tetrathiafulvalene-based ligand as a "magic" couple toward luminescence, single molecule magnets, and magnetostructural correlations, Acc. Chem. Res, vol.48, pp.2834-2842, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220890

M. Feng, F. Pointillart, B. Lefeuvre, V. Dorcet, S. Golhen et al., Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand, Inorg. Chem, vol.54, pp.4021-4028, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139820

S. Speed, M. Feng, G. Fernandez-garcia, F. Pointillart, B. Lefeuvre et al., Lanthanide complexes involving multichelating TTF-based ligands, Inorg. Chem. Front, vol.4, pp.604-617, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01532163

B. Lefeuvre, O. Galangau, J. Flores-gonzalez, V. Montigaud, V. Dorcet et al., Field-induced dysprosium single-molecule magnet based on a redox-active fused 1,10-phenantroline bridging triad, Front. Chem, vol.6, pp.552-562, 2018.

F. Pointillart, J. Ou-yang, G. Garcia, V. Montigaud, J. Flores-gonzalez et al., Tetrathiafulvalene-based helicene ligand in the design of a dysprosium field-induced single-molecule magnet, Inorg. Chem, vol.58, pp.52-56, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01976516

F. Pointillart, Y. Le-gal, S. Golhen, O. Cador, and L. Ouahab, Binuclear gadolinium(III) coordination complex based on bridging tetrathiafulvalenecarboxylate radical cations, Chem. Commun, pp.3777-3779, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01151563

F. Pointillart, B. Le-guennic, S. Golhen, O. Cador, and L. Ouahab, Slow magnetic relaxation in radical cation tetrathiafulvalene-based lanthanide(III) dinuclear complexes, Chem. Commun, vol.49, pp.11632-11634, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00908640

H. Wang, J. Ge, C. Hua, C. Jiao, Y. Wu et al., Photo-and electronically switchable spin-crossover iron(II) metal-organic frameworks based on a tetrathiafulvalene ligand, Angewandte Chemie Int, vol.56, pp.5465-5470, 2017.

J. Su, T. Hu, R. Murase, H. Wang, D. M. -y.;-d'alessandro et al., Redox activities of metal-organic frameworks incorporating rare-earth metal chains and tetrathiafulvalene linkers, Inorg. Chem, vol.58, pp.3698-3706, 2019.

T. T. Da-cunha, J. Jung, M. Boulon, G. Campo, F. Pointillart et al., Magnetic poles determinations and robustness of memory effect upon solubilization in a Dy III -based single ion magnet, J. Am. Chem. Soc, vol.135, pp.16332-16335, 2013.

F. Pointillart, K. Bernot, S. Golhen, B. Le-guennic, T. Guizouarn et al., Magnetic Memory in an Isotopically Enriched and Magnetically Isolated Mononuclear Dysprosium Complex, Angewandte Chemie Int, vol.54, pp.1504-1507, 2015.

L. Tesi, Z. Salman, I. Cimatti, F. Pointillart, K. Bernot et al., Isotope effects on the spin dynamics of single-molecule magnets probed using muon spin spectroscopy, Chem. Commun, vol.54, pp.7826-7829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01834012

J. Flores-gonzalez, F. Pointillart, and O. Cador, Hyperfine coupling and slow magnetic relaxation in isotopically enriched Dy III mononuclear single-molecule magnets, Inorg. Chem. Front, vol.6, pp.1081-1086, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02122161

M. Llunell, D. Casanova, J. Cirera, J. M. Bofill, and P. Alemany,

W. Lu, Y. Zhang, J. Dai, Q. Zhu, G. Bian et al., A Radical-radical and metal-metal coupling tetrathiafulvalene derivative in which organic radicals directly coordinate to Cu II ions, Eur. J. Inorg. Chem, pp.1629-1634, 2006.

M. B. Inoue, M. Inoue, M. A. Bruck, and Q. Fernando, Structure of bis(ethylenedithio)tetrathiafulvalenium tribromodicuprate(I), (BEDT-TTF+)Cu I 2 Br 3 : Coordination of the organic radical cation to the metal ions

, J. Chem. Soc. Chem. Commun, vol.515, 1992.

S. Liu, C. Ambrus, S. Dolder, A. Neels, S. Decurtins et al., II) complex with two types of intramolecular magnetic couplings: Ni(II)-Ni(II) and Ni(II)-TTF ·+, Inorg. Chem, vol.45, pp.9622-9624, 2006.

C. Jia, S. Liu, C. Tanner, C. Leiggener, A. Neels et al., An experimental and computational study on intramolecular charge transfer: A tetrathiafulvalene-fused dipyridophenazine molecule, Chem. Eur. J, vol.13, pp.3804-3812, 2007.

G. Cosquer, F. Pointillart, B. Le-guennic, Y. Le-gal, S. Golhen et al., Ouahab, L. 3d4f heterobimetallic dinuclear and tetranuclear complexes involving tetrathiafulvalene as ligands: X-ray structures and magnetic and photophysical investigations, Inorg. Chem, vol.51, pp.8488-8501, 2012.

S. Takamatsu, T. Ishikawa, S. Koshihara, and N. Ishikawa, Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space, Inorg. Chem, vol.46, pp.7250-7252, 2007.

M. Gonidec, E. Stephen-davies, J. Mcmaster, D. B. Amabilino, and J. Veciana, Probing the magnetic properties of three interconvertible redox states of a single-molecule magnet with magnetic circular dichroism spectroscopy, J. Am. Chem. Soc, vol.132, pp.1756-1757, 2010.

B. S. Dolinar, S. Gomez-coca, D. I. Alexandropoulos, and K. R. Dunbar, An air stable radical-bridged dysprosium single molecule magnet and its neutral counterpart: Redox switching of magnetic relaxation dynamics, Chem. Commun, vol.53, pp.2283-2286, 2017.

G. Cosquer, F. Pointillart, S. Golhen, O. Cador, and L. Ouahab, Slow magnetic relaxation in condensed versus dispersed dysprosium(III) mononuclear complexes, Chem. Eur. J, vol.19, pp.7895-7903, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00855584

A. I. Vooshin, N. M. Shavaleev, and V. P. Kazakov, Chemiluminescence of praseodymium (III), neodymium (III) and ytterbium (III) ?-diketonates in solution excited from 1,2-dioxetane decomposition and singlet-singlet energy transfer from ketone to rare-earth ?-diketonate, J. Lumin, vol.91, pp.49-58, 2000.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys, vol.110, pp.6158-6170, 1999.

M. Dolg, H. Stoll, and H. Preuss, A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds, Theor. Chim. Acta, vol.85, pp.441-450, 1993.

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys, vol.7, pp.3297-3305, 2005.

J. Tomasi, B. Mennucci, and R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev, vol.105, pp.2999-3093, 2005.

M. Cossi and V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys, vol.115, pp.4708-4717, 2001.

R. Improta, V. Barone, G. Scalmani, and M. J. Frisch, A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution, J. Chem. Phys, vol.125, pp.54103-054109, 2006.

A. R. Allouche, Gabedit-a graphical user interface for computational chemistry softwares, J. Comput. Chem, vol.32, pp.174-182, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01674005

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey et al., New capabilities for multiconfigurational quantum chemical calculations across the periodic table, J. Comput. Chem, vol.8, pp.506-541, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409053

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chem. Phys, vol.48, pp.157-173, 1980.

P. Å. Malmqvist, B. O. Roos, and B. Schimmelpfennig, The restricted active space (RAS) state interaction approach with spin-orbit coupling, Chem. Phys. Lett, vol.357, pp.230-240, 2002.

P. Malmqvist and B. O. Roos, The CASSCF state interaction method, Chem. Phys. Lett, vol.155, pp.189-194, 1989.

L. F. Chibotaru and L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes I. Unique definition of pseudospin Hamiltonians and their derivation, J. Chem. Phys, vol.137, pp.64112-064122, 2012.

L. Chibotaru, L. Ungur, and A. Soncini, The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment, Angewandte Chemie Int. Ed, vol.47, pp.4126-4129, 2008.

F. Aquilante, P. Malmqvist, T. B. Pedersen, A. Ghosh, and B. O. Roos, Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): Application to the spin-state energetics of CoIII(diiminato)(NPh), J. Chem. Theory Comput, vol.4, pp.694-702, 2008.

B. O. Roos, R. Lindh, P. A. Malmqvist, V. Veryazov, and P. O. Widmark, Main group atoms and dimers studied with a new relativistic ANO Basis Set, J. Phys. Chem. A, vol.108, pp.2851-2858, 2004.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, New relativistic ANO Basis Sets for transition metal atoms, J. Phys. Chem. A, vol.109, pp.6575-6579, 2005.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, P. O. Widmark et al., New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3, J. Phys. Chem. A, vol.112, pp.11431-11435, 2008.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI