J. R. Windmiller and J. Wang, Wearable electrochemical sensors and biosensors: A review, Electroanalysis, vol.25, pp.29-46, 2012.

J. Zhao, G. Zhang, and D. Shyi, Review of graphene-based strain sensors, Chin. Phys. B, p.57701, 2013.

A. Nag, S. C. Mukhopadhyay, and J. Kosel, Wearable flexible sensors: A review, IEEE Sens. J, vol.17, pp.3949-3960, 2017.

A. Nag, A. Mitra, and S. C. Mukhopadhyay, Graphene and its sensor-based applications: A review, Sens. Actuators A, vol.270, pp.177-194, 2018.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater, vol.9, pp.859-864, 2010.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite, ACS Nano, vol.8, pp.5154-5163, 2014.

X. Zhao, Q. Hua, R. Yu, Y. Zhang, and C. Pan, Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping, Adv. Electron. Mater, 2015.

D. Y. Choi, M. H. Kim, Y. S. Oh, S. H. Jung, J. H. Jung et al., Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring, ACS Appl. Mater. Interfaces, vol.9, pp.1770-1780, 2017.

A. Nag, R. B. Simorangkir, E. Valentin, T. Bjorninen, L. Ukkonen et al., A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications, IEEE Access, vol.6, pp.71020-71027, 2018.

S. Y. Oh, S. Y. Hong, Y. R. Jeong, J. Yun, H. Park et al., Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection, ACS Appl. Mater. Interfaces, vol.10, pp.13729-13740, 2018.

K. Li, H. Wei, W. Liu, H. Meng, P. Zhang et al., 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing, Nanotechnology, vol.29, 2018.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater, vol.6, pp.183-191, 2007.

C. Hou, H. Wang, Q. Zhang, Y. Li, and M. Zhu, Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch, Adv. Mater, vol.26, pp.5018-5024, 2014.

Y. Jeong, H. Park, S. Jin, S. Hong, S. Lee et al., Highly stretchable and sensitive strain sensors using fragmentized graphene foam, Adv. Funct. Mater, vol.25, pp.4228-4236, 2015.

Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application, ACS Nano, vol.9, pp.8933-8941, 2015.

L. Xiang, Z. Wang, Z. Liu, S. E. Weigum, Q. Yu et al., Inkjet-printed flexible biosensor based on graphene field effect transistor, IEEE Sens. J, vol.16, pp.8359-8364, 2016.

E. Singh, M. Meyyappan, and H. S. Nalwa, Flexible graphene-based wearable gas and chemical sensors, ACS Appl. Mater. Interfaces, vol.9, pp.34544-34586, 2017.

L. Huang, Z. Zhang, Z. Li, B. Chen, X. Ma et al., Multifunctional graphene sensors for magnetic and hydrogen detection, ACS Appl. Mater. Interfaces, vol.7, pp.9581-9588, 2015.

J. E. Fonsaca, L. Hostert, E. S. Ortha, and A. J. Zarbin, Tailoring multifunctional graphene-based thin films: From nanocatalysts to SERS substrates, J. Mater. Chem. C, vol.5, pp.9591-9603, 2017.

H. Xu, Y. F. Lu, J. X. Xiang, M. K. Zhang, Y. J. Zhao et al., A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat, Nanoscale, vol.10, pp.2090-2098, 2018.

H. Park, J. W. Kim, S. Y. Hong, G. Lee, D. S. Kim et al., Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors, Adv. Funct. Mater, vol.28, 2018.

J. Lee, C. J. Lee, J. Kang, H. Park, J. Kim et al., Multifunctional graphene sensor for detection of environment signals using a decoupling technique, Solid-State Electron, vol.151, pp.40-46, 2019.

K. E. Whitener, . Jr, and P. E. Sheehan, Graphene synthesis, Diam. Relat. Mater, pp.25-34, 2014.

D. A. Brownson and C. E. Banks, The electrochemistry of CVD graphene: Progress and prospects, Phys. Chem. Chem. Phys, vol.14, pp.8264-8281, 2012.

J. H. Warner, F. Schaeffel, A. Bachmatiuk, and M. H. Rummeli, Methods for Obtaining Graphene, Graphene, pp.129-228, 2012.

J. Fink, High Performance Polymers, 2014.

J. Lin, Z. Peng, Y. Liu, F. ;-r-zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers, Nat. Commun, vol.5, 2014.

L. Jiao, Z. Y. Chua, S. K. Moon, J. Song, G. Bi et al., Laser-induced graphene on additive manufacturing parts, Nanomaterials, vol.9, p.90, 2019.

L. Q. Tao, H. Tian, Y. Liu, Z. Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene, Nat. Commun, vol.8, 2017.

F. Wang, K. Wang, X. Dong, X. Mei, Z. Zhai et al., Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet, App. Surf. Sci, vol.419, pp.893-900, 2017.

D. C. Vanegas, L. Patino, C. Mendez, D. A. De-oliveira, A. M. Torres et al., Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials, Biosensors, vol.8, p.42, 2018.

M. G. Stanford, K. Yang, Y. Chyan, C. Kittrell, and J. M. Tour, Laser-induced graphene for flexible and embeddable gas sensors, ACS Nano, vol.13, pp.3474-3482, 2019.

T. D. Le, S. Park, J. An, P. S. Lee, and Y. Kim, Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics, Adv. Funct. Mater, 2019.

F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou et al., Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter, Carbon, vol.75, pp.236-243, 2014.

A. Lamberti, F. Clerici, M. Fontana, and L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate, Adv. Energy Mater, vol.6, 2016.

C. Ballin, Laser-Induced Graphene as Electrode for Wearable Electronic Devices, 2018.

M. Dosi, I. Lau, Y. Zhuang, D. S. Simakov, M. W. Fowler et al., Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene, ACS Appl. Mater. Interfaces, vol.11, pp.6166-6173, 2019.

Z. Peng, J. Lin, R. Ye, E. L. Samuel, and J. M. Tour, Flexible and stackable laser-induced graphene supercapacitors, ACS Appl. Mater. Interfaces, vol.7, pp.3414-3419, 2015.

L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive micro supercapacitors from laser-induced graphene, Adv. Mater, vol.28, pp.838-845, 2015.

Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors, ACS Nano, vol.9, pp.5868-5875, 2015.

J. B. In, B. Hsia, J. H. Yoo, S. Hyun, C. Carraro et al., Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide, Carbon, vol.83, pp.144-151, 2015.

F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci et al., In situ MoS 2 decoration of laser-induced graphene as flexible supercapacitor electrodes, ACS Appl. Mater. Interfaces, vol.8, pp.10459-10465, 2016.

D. N. Little and S. Nair, Recommended Practice for Stabilization of Subgrade Soils and Base Materials, Transportation Research Board of the National Academies, 2009.

S. C. Mukhopadhyay, Wearable sensors for human activity monitoring: A review, IEEE Sens. J, vol.15, pp.1321-1330, 2015.

M. S. Rahman, S. C. Mukhopadhyay, and P. L. Yu, Novel Planar Interdigital Sensors. In Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation, pp.11-14, 2014.

X. Hu and W. Yang, Planar capacitive sensors-Designs and applications, Sens. Rev, vol.30, pp.24-39, 2010.

B. Timmer, W. Sparreboom, W. Olthuis, P. Bergveld, . Van-den et al., Optimization of an electrolyte conductivity detector for measuring low ion concentrations, Lab Chip, vol.2, pp.121-124, 2002.

Z. Chen, T. Ming, M. M. Goulamaly, H. Yao, D. Nezich et al., Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays, Adv. Funct. Mater, vol.26, pp.5061-5067, 2016.

N. Afsarimanesh, S. C. Mukhopadhyay, and M. Kruger, Molecularly imprinted polymer-based electrochemical biosensor for bone loss detection, IEEE Trans. Biomed. Eng, vol.65, pp.1264-1271, 2018.

M. E. Alahi, S. C. Mukhopadhyay, and L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring, Sens. Actuators B, vol.259, pp.753-761, 2018.