, 4-Methoxyphenyl)oxazol-5-yl)benzonitrile (25): Following procedure A

, -methoxyphenyl)oxazole 13b (0.175 g, 1 mmol), product 25 was obtained in 85% yield (0.235 g) as a yellow solid: mp 175-177 °C. 1 H NMR (400 MHz, CDCl3): ? 8.04 (d, J = 8.6 Hz, 2H), vol.7

. Hz, 13 C NMR (100 MHz, CDCl3): ? 162.6, 161.9

, -Methoxyphenyl)oxazol-2-yl)benzonitrile (26): Following procedure A, from 4-bromoanisole (0.374 g, 2 mmol) and 4-(oxazol-2-yl)benzonitrile 3b (0.170 g, 1 mmol) at 150 °C, product 26 was obtained in 86%, H, 4.28. LRMS calcd for M + C17H12N2O2 276, found 276. 4

C. Mhz, , vol.8

, Hz, 2H), 7.66 (d, J = 8.6 Hz, 2H), vol.7

, Hz, 2H), 3.87 (s, 3H). 13 C NMR (100 MHz

, H, 4.51. LRMS calcd for M + C17H12N2O2 276

, Following procedure A, from 4-bromofluorobenzene (0.350 g, 2 mmol) and 2-(4-methoxyphenyl)oxazole 13b (0.175 g, 1 mmol), product 27 was obtained in 77% yield

C. Mhz, 34 (s, 1H), 7.13 (t, J = 8.6 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H). 13 C NMR (100 MHz, CDCl3): ? 162.6 (d, J = 248, ? 8.03 (d, J = 8.6 Hz, 2H), 7.67 (dd, J = 8.6, 5.2 Hz, 2H), vol.7

, H, 4.20. LRMS calcd for M + C16H12NO2 269

, Following procedure A, from 1-bromo-4-tertbutylbenzene (0.426 g, 2 mmol) and 2-(4-methoxyphenyl)oxazole 13b (0.175 g, 1 mmol)

, 36 (s, 1H), 7.00 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H), 1.36 (s, 9H). 13 C NMR, Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), vol.7

, H, 6.98. LRMS calcd for M + C20H21NO2 307, p.307

, Following procedure B, from 4-bromofluorobenzene (0.350 g, 2 mmol) and 4-(oxazol-5-yl)benzonitrile 3a (0.170 g, 1 mmol), product 29 was obtained in 79% yield, -Fluorophenyl)oxazol-5-yl)benzonitrile

C. Mhz, , vol.8

, Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.57 (s, 1H), 7.19 (t, J = 8.6 Hz, 2H). 13 C NMR (100 MHz, CDCl3): ?

. Hz,

, LRMS calcd for M + C16H9FN2O 264

, Butyl)phenyl)oxazol-5-yl)benzonitrile (30): Following procedure B, from 1-bromo-4-tert-butylbenzene (0.426 g, 2 mmol) and 4-(oxazol-5-yl)benzonitrile 3a (0.170 g, 1 mmol), product 30 was obtained in 77% yield (0.232 g) as a yellow solid

C. Mhz,

. Hz,

, Hz, 2H), 1.37 (s, 9H). 13 C NMR (100 MHz, CDCl3): ?

, H, 5.82. LRMS calcd for M + C20H18N2O 302

, Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.58-7.48 (m, 3H), 7.37-7.26 (m, 5H). 13 C NMR (100 MHz, CDCl3): ?

, 025 mmol) at 150 °C during 24 h in DMA (4 mL) under argon affords the coupling product 31c after evaporation of the solvent and purification on silica gel in 94% yield (0.152 g) as a white solid: mp 230-232 °C

H. Nmr, 400 MHz, CDCl3): ? 8.74 (t, J = 8.6 Hz, 2H), 8.62 (d, J = 7.9 Hz, 1H), 8.32 (d, J = 7.0 Hz, 3H), 7.77-7.65 (m, 4H), 7.07 (d, J = 8.7 Hz, 2H), 3.92 (s, 3H). 13 C NMR (100 MHz, CDCl3): ?

, The reaction of 5, vol.9

, the solvent and purification on silica gel in 90% yield (0.148 g) as a white solid: mp 261-263 °C

. Hz, , p.10

, The reaction of 5

, KOPiv (0.140 g, 1 mmol) in the presence of PdCl(C3H5)(dppb) (15.2 mg, 0.025 mmol) at 150 °C during 24 h in DMA (4 mL) under argon affords the coupling product 33c after evaporation of the solvent and purification on silica gel in 96% yield (0.174 g) as a white solid: mp 223-225 °C

H. Nmr, 400 MHz, CDCl3): ? 8.74 (t, J = 8.6 Hz, 2H), 8.62 (d, J = 7.9 Hz, 1H), 8.47 (d, J = 7.4 Hz, 2H), 8.34 (d, J = 6.7 Hz, 1H), 7.85-7.65 (m, 6H). 13 C NMR

. Hz, 123.5, 122.9, 121.0, 120.9. Anal. Calcd for C22H12F3NO, vol.363

, H, 3.20. LRMS calcd for M + C22H12F3NO 363, found 363. 4'-Methoxy-2-(oxazol-2-yl), p.374

, KOPiv (0.280 g, 2 mmol) in the presence of [Ru(pcymene)Cl2]2 (30.6 mg, 0.05 mmol) at 150 °C during 16 h in NMP (4 mL) under argon affords the coupling product 34 after evaporation of the solvent and purification on silica, -yl)benzonitrile 18b (0.170 g, 1 mmol), p.101

. °c and . Eluent,

C. Mhz, ? 7.78 (d, J = 7.4 Hz, 1H), 7.71 (d, J = 7

, Hz, 1H), 7.67-7.61 (m, 2H), vol.7

. Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 3.80 (s, 3H). 13 C NMR

C. Mhz,

, LRMS calcd for M + C17H12N2O2 276

, The reaction of 4-bromobenzonitrile (0.364 g, 2 mmol), 2-(oxazol-2-yl)benzonitrile 18b (0.170 g, 1 mmol), KOPiv (0.280 g, 2 mmol) in the presence of, vol.2

;. T. Pd-catalyzed-c-h-bond-functionalization, M. Satoh, R. Miura-;-b)-l.-ackermann, A. Vicente, and . Kapdi, Angew. Chem. Int. Ed, vol.36, pp.9792-9826, 2007.

K. M. Chen, D. Engle, J. Wang, M. N. Yu-;-d)-n.-kuhl, J. Hopkinson et al., Angew. Chem. Int. Ed, vol.48, pp.846-864, 2009.

. Glorius, Angew. Chem. Int. Ed, vol.57, pp.2296-2306, 2018.

C. B. Bheeter, L. Chen, J. Soulé, and H. Doucet, Catal. Sci. Technol, vol.6, pp.2005-2049, 2016.

L. and A. Ed, Modern arylation methods, 2009.

S. A. Ohnmacht, P. Mamone, A. J. Culshaw, M. F. Greaney, ;. Verrier et al., Angew. Chem. Int. Ed, vol.73, pp.201-204, 2008.

C. Marsais and . Hoarau, Chem. Eur. J, vol.17, pp.14450-14463, 2011.

F. Bellina, C. Calandri, S. Cauteruccio, R. S. Rossi-;-b)-n, M. J. Nandurkar et al., For palladium-catalyzed direct C2-arylations of oxazole with aryl halides: a), vol.63, pp.9041-9050, 1970.

F. Shibahara, T. Yamauchi, E. Yamaguchi, T. Murai, ;. F. Bellina et al., For palladium-catalyzed direct C5-arylations of oxazole with aryl halides: a), vol.77, pp.56-59, 2012.

F. Shibahara, E. Yamaguchi, T. Murai, ;. Lessi, G. Panzetta et al., For palladium-catalyzed direct C2,C5-diarylations of oxazole: a), vol.76, pp.4676-4686, 2011.

). S. Gorelsky, D. Lapointe, and K. Fagnou, Coord. Chem Rev, vol.77, pp.153-164, 2012.

L. Chen, J. Roger, C. Bruneau, P. H. Dixneuf, and H. Doucet, Adv. Synth. Catal, vol.353, pp.2749-2760, 2011.

). D. Davies, S. M. Donald, and S. A. Macgregor, J. Am. Chem. Soc, vol.127, pp.13754-13755, 2005.

K. Lafrance, J. Fagnou, D. L. Am, S. A. Davies, C. L. Macgregor et al., J. Am. Chem. Soc, vol.128, pp.8649-8709, 2006.

X. Shi, J. Soulé, and H. Doucet, J. Org. Chem, vol.82, pp.3886-3894, 2017.

). S. Oi, H. Sasamoto, R. Funayama, Y. Inoue-;-b, ). W. Li et al., Chem. Lett, vol.37, pp.2315-2319, 2008.

T. Yao, K. Hirano, T. Satoh, and M. Miura, Chem. Eur. J, vol.16, pp.12307-12311, 2010.

N. Primas, A. Bouillon, J. Lancelot, and S. Rault, Tetrahedron, vol.65, pp.6348-6353, 2009.

). H. Hachiya, K. Hirano, T. Satoh, M. Miura, ;. Nishino et al., Angew. Chem., Int. Ed, vol.11, pp.6993-6997, 2009.

F. Yang, J. Koeller, and L. Ackermann, Angew. Chem. Int. Ed, vol.55, pp.4759-4762, 2016.

K. S. Vinay-kumar, T. R. Swaroop, N. Rajeev, A. C. Vinayaka, G. S. Lingaraju et al., Synlett, vol.27, pp.1363-1366, 2016.

B. A. Kulkarni and A. Ganesan, Tetrahedron Lett, vol.40, 1999.

, Accepted Manuscript Advanced Synthesis & Catalysis

B. Li, R. A. Buzon, and Z. Zhang, Org. Synth, vol.87, pp.16-25, 2010.

J. E. Rouchet, M. Hachem, C. Schneider, and C. Hoarau, , vol.7, pp.5363-5369, 2017.

D. Haas, M. Mosrin, and P. Knochel, Org. Lett, vol.15, pp.6162-6165, 2013.

C. Kashima and H. Arao, Synthesis, pp.873-874, 1989.

E. V. Brown, J. Org. Chem, vol.42, pp.3208-3209, 1977.

X. Wu, H. Neumann, S. Neumann, and M. Beller, Chem. Eur. J, vol.18, pp.13619-13623, 2012.

M. Dadkhah and B. Prijs, Helv. Chim. Acta, vol.45, pp.375-381, 1962.

B. P. Das, R. A. Wallace, and D. W. Boykin, J. Med. Chem, vol.23, pp.578-581, 1980.

M. Pulici, F. Quartieri, and E. R. Felder, J. Comb. Chem, vol.7, pp.463-473, 2005.

X. Shen, Y. Zhang, W. Chen, Z. Xiao, T. Hu et al., Org. Lett, vol.16, 1984.

F. N. Hayes, B. S. Rogers, and D. G. Ott, J. Am. Chem. Soc, pp.1850-1852, 1955.

N. Bagi, R. Stefanovszky, J. Kaizer, and G. Speier, Monatsh. Chem, vol.147, pp.425-428, 2016.

, Accepted Manuscript Advanced Synthesis & Catalysis