C. Liu, A. Vyas, M. A. Kassab, A. K. Singh, and X. Yu, The role of poly ADP-ribosylation in the first wave of DNA damage response, Nucleic Acids Res, vol.45, pp.8129-8141, 2017.

H. Ohgushi, K. Yoshihara, and T. Kamiya, Bovine thymus poly(adenosine diphosphate ribose) polymerase. Physical properties and binding to DNA, J. Biol. Chem, vol.255, pp.6205-6211, 1980.

M. Langelier, J. L. Planck, S. Roy, and J. M. Pascal, Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1, Science, vol.336, pp.728-732, 2012.

I. Gibbs-seymour, P. Fontana, J. G. Rack, and I. Ahel, HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity, Mol. Cell, vol.62, pp.432-442, 2016.

A. J. Gottschalk, G. Timinszky, S. E. Kong, J. Jin, Y. Cai et al., Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.13770-13774, 2009.

M. S. Luijsterburg, I. De-krijger, W. W. Wiegant, R. G. Shah, G. Smeenk et al., links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by Non-homologous End-Joining, Mol. Cell, vol.61, pp.547-562, 2016.

L. C. Lehmann, G. Hewitt, S. Aibara, A. Leitner, E. Marklund et al., Mechanistic insights into autoinhibition of the oncogenic chromatin remodeler ALC1, Mol. Cell, vol.68, pp.847-859, 2017.

P. A. Darosa, Z. Wang, X. Jiang, J. N. Pruneda, F. Cong et al., Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal, Nature, vol.517, pp.223-226, 2015.

G. G. Poirier, G. De-murcia, J. Jongstra-bilen, C. Niedergang, and P. Mandel, Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure, Proc. Natl. Acad. Sci. U.S.A, vol.79, pp.3423-3427, 1982.
URL : https://hal.archives-ouvertes.fr/hal-02371437

H. Sellou, T. Lebeaupin, C. Chapuis, R. Smith, A. Hegele et al., The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage, Mol. Biol. Cell, vol.27, pp.3791-3799, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382426

L. Izhar, B. Adamson, A. Ciccia, J. Lewis, L. Pontano-vaites et al., A systematic analysis of factors localized to damaged chromatin reveals PARP-Dependent recruitment of transcription factors, Cell Rep, vol.11, pp.1486-1500, 2015.

J. M. Pleschke, H. E. Kleczkowska, M. Strohm, and F. R. Althaus, Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins, J. Biol. Chem, vol.275, pp.40974-40980, 2000.

R. Smith, H. Sellou, C. Chapuis, S. Huet, and G. Timinszky, CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation, Nucleic Acids Res, vol.46, pp.6087-6098, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808772

G. Timinszky, S. Till, P. O. Hassa, M. Hothorn, G. Kustatscher et al., A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation, Nat. Struct. Mol. Biol, vol.16, pp.923-929, 2009.

A. J. Boersma, I. S. Zuhorn, and B. Poolman, A sensor for quantification of macromolecular crowding in living cells, Nat. Methods, vol.12, pp.227-229, 2015.

A. J. Barbera, J. V. Chodaparambil, B. Kelley-clarke, V. Joukov, J. C. Walter et al., The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA, Science, vol.311, pp.856-861, 2006.

I. Müller, S. Boyle, R. H. Singer, W. A. Bickmore, and J. R. Chubb, Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells, PLoS One, vol.5, p.11560, 2010.

T. Ueda, F. Catez, G. Gerlitz, and M. Bustin, Delineation of the protein module that anchors HMGN proteins to nucleosomes in the chromatin of living cells, Mol. Cell Biol, vol.28, pp.2872-2883, 2008.

A. Bancaud, S. Huet, N. Daigle, J. Mozziconacci, J. Beaudouin et al., Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin, EMBO J, vol.28, pp.3785-3798, 2009.

F. Schaufele, J. F. Enwright, X. Wang, C. Teoh, R. Srihari et al., , 2001.

, CCAAT/enhancer binding protein alpha assembles essential cooperating factors in common subnuclear domains, Mol. Endocrinol, vol.15, pp.1665-1676

J. Beaudouin, F. Mora-bermúdez, T. Klee, N. Daigle, and J. Ellenberg, Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins, Biophys. J, vol.90, pp.1878-1894, 2006.

S. E. Polo, A. Kaidi, L. Baskcomb, Y. Galanty, and S. P. Jackson, Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4, EMBO J, vol.29, pp.3130-3139, 2010.

A. P. Silva, D. P. Ryan, Y. Galanty, J. K. Low, M. Vandevenne et al., The N-terminal region of chromodomain helicase DNA-binding Protein 4 (CHD4) is essential for activity and contains a high mobility group (HMG) Box-like-domain that can bind Poly(ADP-ribose), J. Biol. Chem, vol.291, pp.924-938, 2016.

M. Hatayama, T. Tomizawa, K. Sakai-kato, P. Bouvagnet, S. Kose et al., Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain, Hum. Mol. Genet, vol.17, pp.3459-3473, 2008.

D. M. Shcherbakova and V. V. Verkhusha, Near-infrared fluorescent proteins for multicolor in vivo imaging, Nat. Methods, vol.10, pp.751-754, 2013.

B. Neumann, T. Walter, J. Hériché, J. Bulkescher, H. Erfle et al., Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes, Nature, vol.464, pp.721-727, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01144034

D. E. Zhang, C. J. Hetherington, S. Meyers, K. L. Rhoades, C. J. Larson et al., CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter, Mol. Cell Biol, vol.16, pp.1231-1240, 1996.

J. Ramírez, C. Dege, T. G. Kutateladze, and J. Hagman, MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes, Mol. Cell Biol, vol.32, pp.5078-5088, 2012.

A. Walter, C. Chapuis, S. Huet, and J. Ellenberg, Crowded chromatin is not sufficient for heterochromatin formation and not required for its maintenance, J. Struct. Biol, vol.184, pp.445-453, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00878345

M. Wachsmuth, C. Conrad, J. Bulkescher, B. Koch, R. Mahen et al., High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells, Nat. Biotechnol, vol.33, pp.384-389, 2015.

T. Lebeaupin, R. Smith, S. Huet, and G. Timinszky, Poly(ADP-ribose)-dependent chromatin remodeling in DNA repair, Methods Mol. Biol, vol.1608, pp.165-183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579506

A. Michelman-ribeiro, D. Mazza, T. Rosales, T. J. Stasevich, H. Boukari et al., Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy, Biophys. J, vol.97, pp.337-346, 2009.

K. Suzuki, M. Yamauchi, Y. Oka, M. Suzuki, and S. Yamashita, Creating localized DNA double-strand breaks with microirradiation, Nat. Protoc, vol.6, pp.134-139, 2011.

L. Kamentsky, T. R. Jones, A. Fraser, M. Bray, D. J. Logan et al., Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software, Bioinforma. Oxf. Engl, vol.27, pp.1179-1180, 2011.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260, 1997.

P. L. Privalov, I. Jelesarov, C. M. Read, A. I. Dragan, and C. Crane-robinson, The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5, J. Mol. Biol, vol.294, pp.997-1013, 1999.

. Laronde-leblanc and C. Wolberger, Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior, Genes Dev, vol.17, pp.2060-2072, 2003.

H. Kato, H. Van-ingen, B. Zhou, H. Feng, M. Bustin et al., Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.12283-12288, 2011.

M. S. Luijsterburg, C. Dinant, H. Lans, J. Stap, E. Wiernasz et al., Heterochromatin protein 1 is recruited to various types of DNA damage, J. Cell Biol, vol.185, pp.577-586, 2009.

G. Kustatscher, M. Hothorn, C. Pugieux, K. Scheffzek, and A. G. Ladurner, Splicing regulates NAD metabolite binding to histone macroH2A, Nat. Struct. Mol. Biol, vol.12, pp.624-625, 2005.

Z. Wang, G. A. Michaud, Z. Cheng, Y. Zhang, T. R. Hinds et al., Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination, 2012.

, Genes Dev, vol.26, pp.235-240

M. S. Satoh and T. Lindahl, Role of poly(ADP-ribose) formation in DNA repair, Nature, vol.356, pp.356-358, 1992.

T. Lebeaupin, R. Smith, and S. Huet, The multiple effects of molecular crowding in the cell nucleus: From molecular dynamics to the regulation of nuclear architecture, Nuclear Architecture and Dynamics. Translational Epigenetics, vol.2, pp.209-232, 2018.

D. Hall and A. P. Minton, Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges, Biochim. Biophys. Acta, vol.1649, pp.127-139, 2003.

R. Cortini and G. J. Filion, Theoretical principles of transcription factor traffic on folded chromatin, Nat. Commun, vol.9, p.1740, 2018.

G. D. Burkholder and M. G. Weaver, DNA-protein interactions and chromosome banding, Exp. Cell Res, vol.110, pp.251-262, 1977.

A. P. Boyle, S. Davis, H. P. Shulha, P. Meltzer, E. H. Margulies et al., High-resolution mapping and characterization of open chromatin across the genome, Cell, vol.132, pp.311-322, 2008.

M. J. Smerdon and M. W. Lieberman, Nucleosome rearrangement in human chromatin during UV-induced DNA-reapir synthesis, Proc. Natl. Acad. Sci. U.S.A, vol.75, pp.4238-4241, 1978.

M. Y. Kim, S. Mauro, N. Gévry, J. T. Lis, and W. L. Kraus, NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1, Cell, vol.119, pp.803-814, 2004.

W. Qi, H. Chen, T. Xiao, R. Wang, T. Li et al., Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair, Mutagenesis, vol.31, pp.193-203, 2016.

K. Bouazoune, A. Mitterweger, G. Längst, A. Imhof, A. Akhtar et al., The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization, EMBO J, vol.21, pp.2430-2440, 2002.

Y. Lee, C. Kuo, J. M. Stark, H. Shih, and D. K. Ann, HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response, Nucleic Acids Res, vol.41, pp.5784-5798, 2013.

L. C. Bryan, D. R. Weilandt, A. L. Bachmann, S. Kilic, C. C. Lechner et al., Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions, Nucleic Acids Res, vol.45, pp.10504-10517, 2017.

D. Ahel, Z. Horejsí, N. Wiechens, S. E. Polo, E. Garcia-wilson et al., Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1, Science, vol.325, pp.1240-1243, 2009.

S. Adam, J. Dabin, O. Chevallier, O. Leroy, C. Baldeyron et al., Real-time tracking of parental histones reveals their contribution to chromatin integrity following DNA damage, Mol. Cell, vol.64, pp.65-78, 2016.

H. Strickfaden, D. Mcdonald, M. J. Kruhlak, J. Haince, J. P. Th'ng et al., Poly(ADP-ribosyl)ation-dependent Downloaded from, 2016.

, 21 11267 transient chromatin decondensation and histone displacement following laser microirradiation, Nucleic Acids Research, vol.47, pp.1789-1802, 2019.

F. Erdel, T. Schubert, C. Marth, G. Längst, and K. Rippe, Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.19873-19878, 2010.

F. Erdel, J. Krug, G. Längst, and K. Rippe, Targeting chromatin remodelers: signals and search mechanisms, Biochim. Biophys. Acta, vol.1809, pp.497-508, 2011.

S. C. Knight, L. Xie, W. Deng, B. Guglielmi, L. B. Witkowsky et al., Dynamics of CRISPR-Cas9 genome interrogation in living cells, Science, vol.350, pp.823-826, 2015.

D. Normanno, L. Boudarène, C. Dugast-darzacq, J. Chen, C. Richter et al., Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher, Nat. Commun, vol.6, p.7357, 2015.

A. Tulin and A. Spradling, Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci, Science, vol.299, pp.560-562, 2003.

M. Fujimoto, R. Takii, A. Katiyar, P. Srivastava, and A. Nakai, Poly(ADP-Ribose) Polymerase 1 Promotes the human heat shock response by facilitating heat shock transcription factor 1 Binding to DNA, Mol. Cell Biol, vol.38, p.51, 2018.

H. Ogiwara, A. Ui, A. Otsuka, H. Satoh, I. Yokomi et al., Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors, Oncogene, vol.30, pp.2135-2146, 2011.

D. Toiber, F. Erdel, K. Bouazoune, D. M. Silberman, L. Zhong et al., SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling, Mol. Cell, vol.51, pp.454-468, 2013.

A. Campalans, T. Kortulewski, R. Amouroux, H. Menoni, W. Vermeulen et al., Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair, Nucleic Acids Res, vol.41, pp.3115-3129, 2013.
URL : https://hal.archives-ouvertes.fr/cea-02386162

M. Wang, W. Wu, W. Wu, B. Rosidi, L. Zhang et al., PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways, Nucleic Acids Res, vol.34, pp.6170-6182, 2006.

R. Aleksandrov, A. Dotchev, I. Poser, D. Krastev, G. Georgiev et al., Protein dynamics in complex DNA lesions, Mol. Cell, vol.69, pp.1046-1061, 2018.

T. E. Johnson, J. Lee, L. R. Myler, Y. Zhou, T. J. Mosley et al., Homeodomain proteins directly regulate ATM kinase activity, Bricks for Molecular Machines FRI Stream, vol.24, pp.1471-1483, 2018.

M. K. Ayrapetov, O. Gursoy-yuzugullu, C. Xu, Y. Xu, and B. D. Price, DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.9169-9174, 2014.

M. Fousteri and L. H. Mullenders, Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects, Cell Res, vol.18, pp.73-84, 2008.

M. Altmeyer, K. J. Neelsen, F. Teloni, I. Pozdnyakova, S. Pellegrino et al., Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose), Nat. Commun, vol.6, p.8088, 2015.

R. C. Burgess, B. Burman, M. J. Kruhlak, and T. Misteli, Activation of DNA damage response signaling by condensed chromatin, Cell Rep, vol.9, pp.1703-1717, 2014.

S. Khurana, M. J. Kruhlak, J. Kim, A. D. Tran, J. Liu et al., A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance, Cell Rep, vol.8, pp.1049-1062, 2014.