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Abstract:

New paradigms are required in microelectronic when the transistor is in its 

downscaling limit and integration of materials presenting functional properties not available 

in classical silicon is one of the promising alternatives. Here, we demonstrate the possibility 

to grow La0.67Sr0.33MnO3 (LSMO) functional materials on amorphous substrate with 

properties close to films grown on single crystalline substrate by use of a two-dimensional 

seed layer. X-ray diffraction and electron backscatter diffraction mapping demonstrate that 

Ca2Nb3O10
 nanosheets (NS) layer induces epitaxial stabilization of LSMO films with a 

strong out-of-plane (001) texture, whereas the growth of LSMO films on uncoated glass 

substrates exhibit a non-textured polycrystalline phase. Magnetic properties of LSMO films 

deposited on NS are similar to those of the LSMO grown on SrTiO3 single crystal substrates 

in the same conditions (which is used as reference in this work). Moreover, transport 

measurements take advantages of the texture and polycrystalline properties in order to induce 

low field magnetoresistance at low temperature and also a high value of 40% 
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2

magnetoresistance from 10 to 300 K interesting for sensor applications. Therefore, NS seed 

layer offers new perspectives for the integration of functional materials grown at moderate 

temperature on any substrate which will be the key for the development of oxitronics.

1. Introduction

In the near future, new materials will be required beyond the mainly used CMOS 

(Complementary Metal Oxide Semiconductor)-based electronics with new and dramatically 

improved properties, providing innovative paradigms for information storage and data 

processing (More-than-Moore approach)1,2. Complex oxides are potential candidates thanks to 

their exceptionally broad range of versatile functionalities, a number of them being not 

present in classical semi-conductors. Among these oxides, the doped La0.67Sr0.33MnO3 

manganite (LSMO) is a reference material for its remarkable electronic and magnetic 

properties3–5. The magnetic diagram of LSMO system has a large variety of phases depending 

on the composition with outstanding magnetic and transport properties6,7. LSMO has the 

largest single electron bandwidth and the highest Curie temperature (TC) among the 

perovskite manganites, making it an interesting material for application in spintronic devices8. 

The strontium content leads to hole doping of the manganite, controlling the charge density at 

the Fermi level. Notably, LSMO exhibits a colossal magnetoresistance (CMR) and a 

ferromagnetic-metallic state (FM-M) at room temperature with high TC of 369 K for a 

substitution rate of ~30% for La, rendering this oxide very interesting for applications as 

sensor9,10, in spintronics11–14 and for magneto-optical and optoelectronic applications15,16. 

Moreover, LSMO exhibits a low resistivity at high temperature and can be used as an 

electrode in solid oxide fuel cells-based devices17,18. Also, its integration on flexible substrates 

(mica, polymers…) represents of utmost interest for emerging applications in spintronics or 

electronics in bending conditions8. Nevertheless, the magnetic and transport properties of 

LSMO can be tuned by various factors, such as external hydrostatic pressure19, oxygen 

stoichiometry20,21, Sr doping level22, as well as the strain effect23 because of the sensitive 

lattice-spin-charge coupling. For example, epitaxial LSMO films exhibits lower TC than 

polycrystalline films of about 20 K24,25. In this way, it may be possible to tune magnetic and 

transport properties of films by inducing a texture or near-epitaxy of LSMO films on non-

adapted substrates.However, the coexistence of optimized properties and its integration onto 
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low cost substrates as silicon for the electronics industry or amorphous materials as glass is a 

current challenge required to overcome technological limitations. Indeed, growth of LSMO 

directly on silicon is extremely complicated due to the incompatibility between their 

respective crystalline structure and their reactivity with oxygen. This issue leads to very low 

crystalline quality of LSMO thin films together with a large degradation of their properties. 

This is due to the high reactivity of unsaturated silicon bonds at the surface of the substrate 

leading to an oxidation of the surface and the formation of a SiO2 layer. Even at low 

deposition temperatures, this layer cannot be avoided, and may lead to problems regarding the 

epitaxial growth26,27. 

The main approach to circumvent these difficulties was the integration of high quality 

functional oxides as LSMO films on Si with the growth of a buffer layer by using for example 

TiN, CeO2/Y2O3, SrTiO3 (STO) and more recently SrRuO3/TiN, by molecular beam epitaxy 

or pulsed laser deposition28–34. Nevertheless, the process is generally tedious and not adapted 

to large-scale production due to its complexity and high temperature process. Moreover, this 

method requires necessarily the use of a crystalline substrate and cannot be transferred easily 

to larger lattice mismatched or amorphous substrates as a-Si or SiO2, for example. Therefore, 

regarding the use of complex oxides in a large scale, new approaches are a necessary 

prerequisite for the integration of complex oxides.

Another approach for complex oxides integration onto non-adapted substrates is the 

use of nanosheets (NS) as seed layer35. In this approach, NS created by an exfoliation process 

of layered oxides are transferred on low cost large-surface substrates as silicon or glass, 

providing the seed layer for the growth of complex oxide thin films independently on the 

bottom substrate material. These NS can be synthesized from precursors prepared by solid 

state route, followed by an exchange reaction of protonation in solution and finally exfoliation 

to obtain the colloidal dispersion suitable to transfer the NS on the substrate by Langmuir-

Blodgett method36. These NS are exceptionally rich in structural diversity (cubic, rectangular, 

hexagonal structures…) and can be used as seed layers to induce epitaxy of a wide range of 

complex oxides. A large variety of layered oxides are dedicated to the perovskite structures. 

The NS obtained by exfoliation of layered structures such as Ruddlesden-Popper phases (for 

instance SrLaTi2TaO10
2- and Ca2Ta2TiO10

2-), Dion-Jacobson phases (for instance 

(Ca,Sr)2(Nb,Ta)3O10
 and LaNb2O7

)and Aurivillius phases (for instance (Sr,Bi)Ta2O7
2 and 

Bi4Ti3O12
2) 37 open new perspectives for the integration of oxides onto non-adapted 

substrates. Among the NS obtained from these layered oxides, Ca2Nb3O10
 (CNO) has been 
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used for the growth of various materials as TiO2 38, CaBi4Ti4O15 39, or (Na1xKx)NbO3 40, 

SrTiO3 41 and SrRuO3 
35,42. The Dion-Jacobson parent phase KCa2Nb3O10

 crystallized in the 

monoclinic system (a = 0.7741 nm, b = 0.7707 nm, c = 1.4859 nm,  = 97.51°, JCPDS card 

N°01-075-9853) and is usually described in a larger tetragonal unit cell with lattice constants 

a = 0.7727 nm and b = 2.9466 nm43,44. Its structure consists in stacking of slabs of 3 

perovskite layers laying in the (001) plane, separated by a cation (K+) layer. After exfoliation, 

the two-dimensional lattice of the nanosheets has a square a-b plane with aNS = 0.384 nm.  

Therefore, the use of CNO NS as seed layer is especially well-adapted for the growth of 

La0.67Sr0.33MnO3 with a lattice parameter of 0.386 nm in the pseudo-cubic description, leading 

to a misfit of only -0.18 %. Moreover, CNO NS layer exhibits a good thermal stability. It has 

been reported to be stable up to 800°C in air37, and segregates into a mixture of Ca2Nb2O7 and 

CaNb2O6 above this temperature. Similarly, Kweon et al. report that the thermal stability of 

CNO NS is ensured up to ~600°C, depending on the number of layers40. Thus CNO NS layer 

is expected to be suitable for the growth of epitaxial LSMO films by pulsed laser deposition 

since, in our deposition system, the optimal temperature was around 640°C on single crystals 

SrTiO3 substrates25,45, in a partial pressure of oxygen. 

In this paper, we report the structural and physical properties of highly (001)-textured 

LSMO films deposited on CNO NS seed layer using glass as substrate (GS). The local epitaxy 

of LSMO resulting from the growth of the film on small crystalline domains formed by the 

juxtaposition of the buffer CNO NS offers the possibility to investigate the electronic and 

magnetic properties of textured film on amorphous substrate. The properties of these textured 

film were compared with those of polycrystalline46 and fully strained films25,40, using not 

covered glass and STO substrates, respectively. Furthermore, the influence of the growth 

temperature on the different type of substrates was also investigated in order to demonstrate 

the potential of NS for the growth of LSMO at intermediate temperature. 

2. Experimental Section

First, powder of KCa2Nb3O10 oxide was synthesised by solid state reaction. Precursors 

oxides K2CO3 (Acros Organics, 99 %), Ca2CO3 (R.P. Normapur, 99.5 %) and Nb2O5 (Alfa 

Aesar, 99.5 %) were ball-milled in ethanol during 5 h before a thermal treatment at 1100°C 

during 10 h. Following Ebina et al.'s method47, the KCa2Nb3O10 oxide was then proton-
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5

exchanged in 6 M HNO3 for 3 days. The protonated phase was exfoliated by reaction with 

tetra(n-butyl)ammonium hydroxide (TBAOH) in a molar ratio 1:1, during 14 days. The 

obtained TBACa2Nb3O10 nanosheets (NS) were deposited on fused silica substrates (glass 

substrate (GS): 10  10  0.5 mm, Neyco, NEGS3) by Langmuir-Blodgett method with the 

help of a KSV NIMA instrument. After that, deposited NS/GS samples were subjected to a 

thermal treatment at 110°C during 90 min followed by an exposition to UV radiations during 

45 min to enhance the adhesion of NS on GS and remove adsorbed residual solvents. TEM 

characterizations of the NS are presented on Figure S1.

Then, La0.67Sr0.33MnO3 (LSMO) thin films have been grown on cut 5  5  0.5 mm3 

NS/GS prepared samples, pristine GS and (001)-oriented SrTiO3 (STO) substrates by pulsed 

laser deposition (PLD). Prior to deposition of LSMO, GS and STO substrates were 

successively cleaned in acetone and ethanol ultrasonic baths. A KrF excimer laser (= 248 

nm) was used with a repetition rate of 2 Hz and a laser fluence adjusted to get a deposition 

rate close to 0.1 Å per laser pulse. This beam laser is focused on a La0.67Sr0.33MnO3 

polycrystalline target prepared by standard solid-state reaction. The deposition was carried out 

under oxygen ozone mixture25. The deposition pressure at the growth temperature was 5  

104 mbar. The LSMO thickness was fixed to be around 40 nm for all samples by adjusting 

the deposition time. In order to investigate the influence of the temperature on the 

crystallization of LSMO films, the substrate temperature (TG) was set at 550°C and 645°C. A 

40 nm thick LSMO film grown on (001)-oriented STO in similar conditions sample was taken 

as reference throughout this work (see Figures S3 and S4). All thicknesses have been 

confirmed using X-ray reflectometry (see Figure S6). 

The structural properties were characterized by X-ray diffraction (XRD) with a Philips 

X’Pert MRD diffractometer operating with monochromatic Cu K1 radiation ( = 1.5406 Å) 

and equipped with a Pixel detector. The morphology of films was investigated by scanning 

electron microscopy (SEM) with a Zeiss Supra 55 (FEG source) and atomic force microscopy 

(AFM) Pico SPM-LE of Molecular Imaging in tapping mode. The surface coverage of glass 

substrates by NS is estimated around 90% by AFM imaging acquired on different large scale 

areas of the samples (see Figure S2 (d)). In order to get better insight of the structural 

dependence between LSMO and NS deposited glass, electron backscatter diffraction (EBSD) 

mapping of sample surfaces were performed on the SEM microscope equipped with a ultra-

sensitive high resolution detector from Bruker at an accelerating voltage of 15 kV. Data are 
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computed by means of Esprit Software. The phase identification and orientations of 

LSMO/GS and LSMO/NS/GS samples are based on imposed starting structural references in 

the computational method. The rhombohedral and hexagonal structure descriptions of LSMO 

have been defined for the two respective samples.

The magnetization of LSMO films was determined using a Squid MPMS XL Quantum 

Design. The sample was placed in the sample holder with a parallel configuration to the 

magnetic field H. The calculated error is ~ 22 emu.cm3. This error takes into account the 

measurement errors of the magnetization (Squid device error: m = 5  106 emu), the surface 

of square samples determined by direct measurement (L = 3  105 m) and the thickness 

determined by X-Ray reflectometry (t = 1  109 m). The main error originates from the 

surface measurements of the sample. The temperature dependence of transport properties was 

determined by the four probe method from 5 K to 370 K in a physical properties measurement 

system (PPMS) by Quantum Design. The magnetoresistance was determined at 300 K and 5 

K by applying successively a magnetic field of 0 and 9 T perpendicular to the film surface.

3. Results and discussion

3.1.  Structural analyses

Scanning electron microscopy (SEM) micrographs of LSMO films deposited on GS 

and NS/GS samples are displayed in Figure S7. For uncoated GS samples, the deposition of 

LSMO leads to a flat and homogenous surface over the entire sample surface, independently 

of the growth temperature (TG). In contrast, SEM micrographs taken on GS samples coated by 

NS show a tessellated surface due to the juxtaposition of NS. The size of the NS in an 

equiaxed-shape description is between 100 nm to 2 μm for the largest ones. The darker areas 

between well-delimited nanosheets are related to LSMO deposited on not covered glass 

zones. An analysis of the images provides a surface coverage level of the substrate with NS 

close to 90% (see Figure S2 (d)). 

To get better insight of the morphology of LSMO films, Atomic Force Microscopy 

(AFM) characterizations are displayed in Figure S8 and Figure 1 for 10  10 μm² area and a 

zoom of 2  2 μm² area, respectively. For the NS/GS samples, the NS are juxtaposed 

Page 6 of 28

6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



alongside each other even if small overlapping is revealed in some places. As it is observed 

above by SEM analyses, AFM images confirm the excellent coverage level of the surface by 

NS.

Figure 1. 2  2 μm2 AFM images of LSMO films grown on GS (a-b) and NS/GS (c-d) at 
550°C and 645 °C respectively. A granular structure of films appears at high deposition 
temperature.

However, important differences are observed in the morphology of films as function 

of the substrate and the growth temperature (TG). Without NS, the surface is uniform and 

exhibits an apparent roughness due to the presence of long-tipped streaks ascribed to the glass 

substrate. The root mean square (RMS) roughness increases from 0.35 nm up to 0.70 nm for 

Page 7 of 28

7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

growth temperature at 550 and 645°C, respectively. For the NS coated glass substrates, the 

films cover the NS and the interstices. The RMS roughness increases from 0.20 up to 0.47 nm 

when TG rises from 550°C up to 645°C. Interestingly, small domains identified by a granular 

morphology are discernible (Figure 1 (d)). The estimation of the average particle size with the 

rise of TG gives an increase from ~20 to ~40 nm for LSMO/GS samples and 20 to 50 nm for 

LSMO/NS/GS samples. The swelling of grains is correlated to the apparent roughness of 

films determined above and the TG increase. The roughness of LSMO films is considerably 

lower than the values (between 14 and 56 nm) reported by Nguyen et al.48 for 2 μm-thick 

columnar Pb(Zr0.52Ti0.48)O3 films grown on LaNiO3/CNO nanosheets. In our case, the growth 

of LSMO films carried out with a lower repetition rate of the laser and growth rate (2 Hz and 

0.1 Å per pulse, respectively) and significantly lower thickness (40 nm) lead to lower surface 

roughness.

The structural characterizations of LSMO films have been carried out by X-ray 

diffraction in specular θ-2θ configuration. The corresponding diffractograms at different TG 

are shown in Figure 2. First, LSMO films grown directly on amorphous glass substrate exhibit 

a polycrystalline structure indexed according to the rhombohedral structure (space group ) 𝑅3𝑐

known to be the structure of LSMO deposited by pulsed laser deposition or by sputtering 

magnetron onto non-adapted substrates46,49. According to the required energy for the 

crystallization of films, a significant increase in the crystallinity is observed between 550 and 

645°C due to a higher thermal activation. The lattice parameters, hexagonal setting, are found 

to be a = 0.550(2), c =1.337(8) nm and a = 0.546(7) nm, c = 1.331(8) nm for TG = 550°C and 

645°C, respectively. These values are in good agreement with data reported by Hibble et al. 

for bulk rhombohedral LSMO50. In the absence of an adapted template layer provided by 

CNO NS, the growth temperature is sufficient to induce the spontaneous crystallization of 

LSMO in the rhombohedral structure identified as the structure of the bulk material with a 

complete relaxation of intrinsic strains. For LSMO films deposited on NS/GS, a strong 

increase in the intensity related to the (001), (002) and (003) reflections (pseudo-cubic setting) 

is observed which means that the presence of the CNO NS induces a texturation of LSMO on 

NS with a 00l out-of-plane direction as for the LSMO film grown on single crystal (001)STO 

substrate. The out-of-plane lattice parameter of the LSMO phase is found to be close to 

0.384(5) nm (550°C) and 0.383(6) nm (645°C) (pseudo-cubic setting). It can be mentioned 

that no reflection related to the NS layer is evidenced in XRD scans because of the too small 

diffraction volume. Nevertheless, the values of LSMO films match closely with CNO 
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reported in the literature 38,43,44,51, thereby confirming the epitaxial stabilization of the LSMO 

cell on the CNO one. A slight increase in the peak intensity is observed between 550 and 

645°C indicating that the crystalline quality is enhanced with the increase of TG. Finally, for 

LSMO grown on (001)STO, the out-of-plane lattice parameters determined from the high 

resolution -2 scans (Figure S4) are c = 0.383(8) and 0.385(2) nm at 550 and 645°C, 

respectively which are very close to the values observed for the films deposited on NS. For 

LSMO films grown on GS, NS/GS and STO substrates at 645°C, full width at half maximum 

(FWHM) values obtained from the rocking curves of the (002) peak (not shown here) are 

2.85, 1.33 and 0.04°, respectively. Hence, the mosaicity of LSMO films is dependent on the 

nature of the substrate with an enhancement of the structural quality of films grown on glass 

thanks to the NS seed layer.

The average size of the crystallite domains was determined using the Scherrer’s 

formula52. The size increases with TG from 14 to 34 nm and from 21 to 40 nm for LSMO/GS 

samples and LSMO/NS/GS, respectively. These values match closely with the ones of 

granular domains determined above in enlarged AFM scans (see Figure 1). Therefore, the 

increase of TG as well as the use of NS enhances the size of crystallite domains and the 

structural quality of films. For LSMO deposited on GS, the thermal energy promotes the 

diffusion of adatoms on the surface resulting in the increase of the grain size. For LSMO 

grown on NS/GS, a similar behavior is observed as function of TG but grains are larger than 

on GS showing that diffusion of the add-atoms seems more important on NS than on only GS. 
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10

Figure 2. θ-2θ X-ray diffractograms of LSMO thin films grown on GS (blue) and NS/GS 
substrates (red) at 550°C and 645°C. Zoom in diffractograms of LSMO/NS/GS films reveal 
peaks attributed to the polycrystalline phase. Stars (*) and diamond () symbols refer to 
instrumental artefact and silver traces, respectively.

In order to study the texture of the film in more details, electron backscatter diffraction 

(EBSD) mapping is reported in Figure 3 for LSMO films deposited onto NS/GS at 550°C (a 

and b) and 645°C (c and d) for out-of-plane and in-plane configuration, respectively. The 

mapping of the surface highlights the tessellated areas similar to SEM imaging (see Figure 

S7) corresponding to the size of the NS. All the electron backscattered beam signal is 

considered to be assigned to the LSMO film since the thickness of NS is too small to be 

detected. LSMO films are showing a preferential orientation along the [001] direction as seen 
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with the standard stereographic triangle (see Figure 3). The texturation is induced by the NS 

crystalline structure and confirms our previous XRD measurements. In-plane analysis 

reported in Figure 3 (b) and d reveals a mixed contribution between the [100] and [110] 

crystallographic directions of the LSMO and confirms the full disorientation of in-plane 

domains. Furthermore, some areas also appear in black and can be ascribed to areas being not 

covered by NS (see Figure S7 and S8). To understand this phenomenon, EBSD mapping was 

also performed on polycrystalline LSMO films deposited on GS (not shown here). 

Unfortunately, the polycrystalline domains size seems to be too small and do not allow a 

sufficient diffracting volume to be indexed in the limit of resolution of our device and appears 

black. Considering this along with the spontaneous crystallization of LSMO on GS, the areas 

between NS seems to be covered by polycrystalline LSMO. The observation in XRD scans of 

additional reflections at 32.8°, 81.5° and 98.2° on LSMO films deposited on NS/GS substrates 

(red enlarged scans in Figure 2) supports the EBSD observations. These additional reflections 

can be attributed to the rhombohedral phase but their low intensity indicates that the 

corresponding diffraction volume is small and could arise from the interstitial gaps between 

NS. In other words, NS induce LSMO epitaxial growth along the out-of-plane direction but 

does not induce the texture around the NS. For that reason, it is important to reach a high 

coverage level of the GS surface by NS. The orientation of LSMO on NS does not seem to 

depend strongly on the growth temperature but actually on the presence or absence of NS.
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Figure 3. EBSD maps of LSMO thin films deposited at 550°C (left panel) and 645°C (right 
panel) on glass substrates coated by NS, (a, c) out-of-plane and (b, d) in-plane configuration. 
The out-of-plane images single-red color demonstrate that LSMO films are highly textured 
along the [001] direction.

3.2.  Magnetism

The temperature dependence of the magnetization (M) of LSMO films is shown in 

Figure 4 (a) and (b) for films grown at TG = 550°C and 645°C, respectively. A magnetic field 

of 0.05 T is applied parallel to the film surface. Two LSMO/STO samples grown at 550°C 

and 645°C in similar conditions than on GS and NS/GS are taken as references to compare the 

magnetic properties. For all the curves, the magnetization increases below Tc around 300 K to 

reach a plateau in the low temperature range (below ~150 K) but some differences are 

observed both in the amplitude of the magnetization and Tc of films.
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Interestingly, the magnetization of LSMO/NS/GS films approaches closely the single 

crystal films for both TG. At the contrary, a difference of M of around 170 emu cm3 is 

observed between the films grown on GS and the buffered NS film for both TG (all data are 

reported in Table 1). Furthermore, for LSMO grown directly on GS, M tends to slightly 

increase with TG of about 15 emu.cm3 (from 256 up to 271 emu.cm3) but remains 

substantially lower than values of LSMO films on NS/GS and STO due to the polycrystalline 

structure of the films. The same trend is observed for films deposited on NS/GS with a rising 

of M up of 18 emu.cm3 (425 (550°C) to 443 emu.cm3 (645°C)). By comparison, the 

magnetization of LSMO/STO samples tends also to increase from 453 and 463 emu.cm3 with 

the TG raising. These results are consistent with values reported in references25,45,53 for 

LSMO/STO thin films above the critical LSMO thickness of about 10 nm for which magnetic 

and electrical properties are altered. In this regard, the growth temperature does not affect 

critically the magnetization and can be related to the improvement of the crystallinity with TG.

In order to accurately measure the Curie temperature (TC) of the films by the derivative 

method (see Figure S9), the M(T) was measured with a magnetic field of 0.005 T around the 

magnetic transition after applying a field of 1 T at low temperature (see inset Figure 4 (a) and 

(b)). For LSMO films grown directly on GS at 550 and 645°C, they exhibit a TC equal to 333 

and 348 K, respectively. These values are somewhat greater than LSMO grown on a single 

STO crystal where a sharp magnetic transition occurs around TC of 304 and 332 K for 

increasing TG. Therefore, the TC measured for LSMO/GS films is very consistent with data 

reported by Navasery et al.49 in the case of polycrystalline LSMO. For LSMO on STO, the 

LSMO film is clamped on the crystalline substrate. The induced tensile strain driven by the 

lattice mismatch between the substrate and the film (-1.15%) leads to a deformation of the 

perovskite structure accompanied by a tilting of the OMnO bonds and a diminution of TC 

compared to the bulk54,55. In contrast, the crystallization of LSMO deposited on GS leads to 

polycrystalline structure with the complete relaxation of strains which explains the 

displacement of TC close to the bulk LSMO one (TC is within the range between 360 and 370 

K). For textured LSMO films deposited on NS, the TC found at 318 K and 337 K at 550°C 

and 645°C, respectively, is between the values measured for LSMO films deposited on GS 

and on (001)STO because of the combined contribution of both polycrystalline structure and 

local epitaxy on NS.
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Figure 4. Temperature-dependent magnetization curves of LSMO films grown at 550°C (a) 
and 645°C (b) on GS (blue), NS/GS (green) and (001)STO (black). A magnetic field of 0.05 
T and 0.005 T (in insert) was applied parallel to the surface for all the zero field cooled. 
Hysteresis loops acquired at 100 K of LSMO thin films grown at 550°C (c) and 645°C (d) for 
GS, NS cover GS and (001)STO substrates.

The hysteresis loops displayed in Figure 4 (c) and (d) are acquired at 100 K, just 

below the decrease of the magnetization (~150 K). Overall, the variation of the magnetization 

is consistent with the temperature-dependent magnetization curves described above. The 

remanent magnetic field BR and the saturation magnetic field BSat gradually increase for 

LSMO films deposited on GS, NS/GS and STO substrates, respectively (see values 

summarized in Table 1). The influence of the growth temperature on BSat is also visible with 
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an increase up to 182 emu.cm3 for LSMO/NS/GS sample with the increase of TG. The rise in 

the saturation magnetization is somewhat lower for the polycrystalline and the single-crystal 

LSMO films (63 and 35 emu.cm3, respectively). For LSMO/NS/GS samples, the 

magnetization is between the values measured on the two other samples at TG=550°C but is 

similar to LSMO on (001)STO at TG=645°C. This behavior confirms the enhancement of the 

structural quality of LSMO films provided by NS. The coercivity HC is subjected to a similar 

behavior as function of the nature of the substrate. The lower value of HC is observed for the 

LSMO films on STO with 27 and 52  104 T at TG =550 and 645°C. Thus, HC is divided by 2 

as function of TG. These low values of the coercivity reflect the single crystal structure and 

large magnetic domains. In contrast, the hysteresis loops suffer a spreading for LSMO/GS 

with values increasing up to ~350 and ~250 Oe for TG = 550°C and 645°C. In the 

polycrystalline LSMO samples, the formation of magnetic domains is driven by the particle 

size influenced by the growth temperature. As suggested by Lecoeur et al.56, the domains 

switch mostly independently each in a narrow range of fields and since the distribution of 

switching fields is large, it provides a higher macroscopic coercivity when the particle size 

decreases. For (001)-textured LSMO/NS/GS, the value of HC decreases noticeably compared 

to polycrystalline LSMO/GS films. This change is consistent with the improvement of the 

structural quality and the particle size evidenced by AFM and XRD measurements for the 

textured films. 

Nevertheless, the combination of shape and magnetocrystalline anisotropy in epitaxial 

(001)-oriented LSMO films induces a magnetic anisotropy along preferential crystallographic 

orientations which minimize the magnetostatic energy when an external field is applied57. As 

such, the [110] and [100] directions are identified to be easy and hard axes, respectively. 

When the magnetization change over from the [100] to the [110] axis, the hysteresis loop 

becomes larger and the coercivity increases. In polycrystalline films grown on glass, the full 

misorientation of grains leads to the statistical distribution of the easy and hard axis of the 

individual grains in all directions of space, and therefore to a random orientation in the 

macroscopic measurements. The shape anisotropy is no longer relevant and the more likely 

easy axis take place in the [111] axis of respective oriented grains58,59, resulting in the 

weakening of the square-shape hysteresis loop. For (001)-textured LSMO/NS/GS films, both 

[110] and [100] orientations are randomly in-plane distributed leading to a more narrowed 

magnetic response. 
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Therefore, the presence of NS improves greatly the coercivity of LSMO films with 

respect to the polycrystalline films by inducing larger magnetic domains. The LSMO films 

undergo a magnetic transition from magnetically hard to a magnetically soft material as 

function of the substrate.

3.3. Transport properties

The temperature dependence of the electrical resistivity measured at 0 and 9 T is 

plotted in Figure 5, for TG = 550°C (a) and 645°C (b). Contrary to magnetic measurements, 

the magnetic field applied in the PPMS system is perpendicular to the film surface. At first 

glance, the zero-field resistivity at 300 K of polycrystalline LSMO films grown on GS is 

always higher than the resistivity of films deposited on STO and NS/GS. The global 

difference in the resistivity level observed for polycrystalline LSMO/GS samples compared to 

LSMO on STO is explained by the effective incorporation of grain boundaries acting as a 

local blockage to the electron delocalization across the crystalline domains. This behavior can 

be correlated to our AFM and XRD structural characterizations for which a smaller grain size 

is observed in the case of the complete polycrystalline films grown on GS (see Table 1 for 

more details). However, the discrepancy is weaker between LSMO deposited on NS and STO, 

especially for TG = 645°C. Hence, the improvement of the transport is explained by two 

independent contributions driven by the structural quality of films. First, the growth 

temperature leads to a better film crystallinity with larger crystalline domains. Secondly, NS 

enhance greatly the structural quality of short range-epitaxial LSMO films by inducing the 

high texturation along the [001] direction and an increase of the grains size with a different 

growth mechanism on the scale of NS. Therefore, the use of NS promotes the carriers 

delocalization and the lowering of the resistivity. Moreover, in the low temperature region 

below 50 K, a resistivity minimum appears for LSMO films grown on GS and NS/GS and not 

present for LSMO/STO one. The nature of this effect is H-dependent as evidenced by the 

resistivity minimum shift toward lower temperature and flattens out when a magnetic field of 

9 T is applied (see Figure S10). This effect is related to the presence of grain boundaries 

which act as diffusion scattering for the transport carrier which are not present for film 

deposited onto single crystal substrates60,61. Numerous models based on the electronic 

localization have been proposed to explain the appearance of the resistivity minimum within 
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the low-temperature range observed in other manganites61–65. The first one is a Coulomb 

blockade effect related to weak localization and strong electron-electron interaction in a 

disordered metallic state. Localized charge carriers need to overcome the Coulomb barrier and 

the magnetic tunnel barrier to tunnel from a grain to the other. With the reduction of particle 

sizes, the contribution of the Coulomb barrier increases and leads to a steeper rise in 

resistivity. This effect is presumed to prevail for small grains (below 50 nm)61.

 The second model consists in the contribution of intergranular spin-polarized 

tunneling (ISPT) between antiferromagnetically coupled grains through the grain 

boundaries63. The transport across the grain boundaries is sensitive to the applied magnetic 

field. Under zero external H-field, the neighboring grains align in such a way that the charge 

carriers of the grains have opposite spins and remains immobile. Such anti-ferromagnetic 

interaction results in a gap between the charge carriers of the neighboring grains. With 

increasing temperature, the grains reorient themselves and the carriers have enough energy to 

overcome the barrier (resistance decreases). Application of external magnetic field forces the 

grains to orient such that the spins carrier from the neighboring grains aligns favorably to 

reduce the energy gap. According to this model, the resistivity minimum should flatten out 

gradually with increasing field and vanish at some critical field. In this way, the resistivity 

minimum is nearly suppressed at H = 9 T for the LSMO film grown at 645°C on NS/GS and 

largely reduced for other polycrystalline substrates (see Figure S10).

Another important part resulting from the transport curves in Figure 5 (a) and (b) is the 

maximum of resistivity identified as the metal-insulator transition (TP) usually correlated to 

the magnetic transition from ferromagnetic–metal (FM-M) to paramagnetic–insulator (PM-I). 

This effect can also be seen on the minimum of magnetoresistance MR defined as MR = 100 

 (ρ0ρH)/ρ0, where ρ0 is the zero-field resistivity and ρH is the resistivity in the applied field 

H is plotted versus the temperature dependence in Figure 5 (c) and (d).

LSMO films show TP around the temperature range of 225–312 K for the different type of 

substrates (see Table 1 for more details). By comparing the difference in temperature between 

the magnetic and the electrical transition T = TC – TP, we observe a rise in the discrepancy 

between the two distinct transitions in polycrystalline films. The variation of T is 

specifically more important at TG = 645°C. In a perfect LSMO single crystal, the difference 

must stay near zero13,66. However, the existence of grain domains in LSMO films deposited 

on GS and a lesser extent, in LSMO films grown on NS/GS influences the transport 

mechanisms. The electrical transition in polycrystalline films is strongly dependent on the 
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percolation threshold between neighboring grains in such a way that conduction path have to 

be established to ensure the carrier delocalization. On the reverse, the magnetic transition is 

statistically dependent on the commutation of each domain, leading to an average contribution 

around the observed TC. Finally, the magnetic transition is more influenced by the structural 

properties of films such as the crystallographic phase or strains modifications than the particle 

size. In consequence T is more representative of the morphology of films. This effect is 

clearly highlighted here in Figure 5 (c) and (d) with the displacement of dash lines stand for 

the metal-insulator transition, leading to a lower apparent TP for polycrystalline films. 

Therefore, the presence of NS on GS enhances the morphology of LSMO films (larger 

particle size and preferential orientation) and results in the displacement of the metal-insulator 

transition by stabilizing the metallic state at higher temperature.

Figure 5. (a) Resistivity of LSMO films measured in parallel configuration at H = 0 T and 9 
T for TG = 550°C (a) and 645°C (b) and different substrates (STO, NS/GS, GS). (b) 
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Dependence of the magnetoresistance of films as function of the temperature at TG = 550°C 
(c) and 645°C (d).

The amplitude of the MR is also very different with temperature depending on the 

different substrates (see Figures 5 (c) and (d)). In LSMO/STO samples, the low temperature 

MR is almost suppressed in good agreement with result reported by Yang et al. for single 

crystals substrates67. At the contrary, from low temperature to the apparent metal-insulator 

transition around 200 K, the MR of LSMO films on GS and NS/GS is constant with a value 

between 40 to 50%. Also, it is interesting to note that a strong MR is preserved within the low 

temperature range far below the transition for polycrystalline and textured films. In the case of 

textured LSMO films on NS/GS, this remarkable behavior represents of interest given that 

textured films have a high magnetization close to films of high quality deposited onto SrTiO3. 

The presence of MR at low temperature for the textured LSMO film on NS is due to the grain 

boundaries of the textured polycrystalline structure. Furthermore, the presence of small 

polycrystalline domains on not covered GS zones confirmed by the presence of 

polycrystalline LSMO traces detected by XRD measurements (Figure 2) and AFM 

characterizations (Figure S2 (d)) can also amplify this low temperature MR.

To investigate deeper  the transport response of films when a magnetic field is applied, 

we present in Figure 6 (a) and (b), the MR at 5 K versus H. For LSMO/STO samples, the MR 

is very weak, whereas LSMO/GS and LSMO/NS/GS samples show a high negative MR at 5 

K of about 55 and 45 % for TG = 550 and 645°C, respectively. 
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Figure 6. Magnetoresistance of LSMO films measured with magnetic field applied 
perpendicular to the surface at 5 K and 300 K (in insert),  for TG = 550°C (a) and 645°C (b) on 
STO (black), NS/GS (red) and GS (blue).

Interestingly, the MR increases rapidly in the low-field region. This behavior known 

as low-field effect is only observed for polycrystalline and textured LSMO films and is 

suppressed at 300 K (inset of Figure 6). The low-temperature MR in the polycrystalline films 

at low fields can be understood in terms of magnetic domain scattering at the boundary 

regions. Since the conduction electrons are almost completely polarized inside a magnetic 

domain, electrons are easily transferred between pairs of Mn3+ and Mn4+ ions60,68. However, 

when these electrons travel across grains, strong spin-dependent scattering at the boundaries 

will lead to a high zero-field resistivity. Application of a moderately low field can readily 

align the domains into a parallel configuration causing the resistivity to drop substantially. 

This phenomenon is very important for sensor applications69 and we are showing the 

possibility to tune this behavior with the different type of substrate and temperature growth. 

This is particularly interesting because with the different type of substrate, we are able to 

stabilize highly-textured LSMO films deposited on CNO NS while limiting the resistivity 

threshold unlike pure polycrystalline films.
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Table 1. Magnetic and electrical properties of LSMO films deposited on different substrates at 550 and 645°C.

Substrate
TG

[°C]

Grain 

size [nm]

TC

[K]

TP

[K]

T = TCTP

[K]

M (0.05T)

[emu cm3]

BSat

[emu cm3]

 Hc (100 K)

[ 104 T]

300K 

(0Oe)

[ cm]

CMR (300K)

[%]

MR 

low field [%]

GS 550 14 333 227 106 256 278;274 252;255 2.7101 30 30

NS/GS 550 21 318 230 88 425 390;422 248;212 1.2101 35 20

STO 550 - 304 281 23 453 569;575 23;47 7.0103 60 

GS 645 34 348 257 91 271 329;331 357;357 5.7101 35 30

NS/GS 645 40 337 300 37 443 581;575 172;173 2.8102 50 -

STO 645 - 332 312 20 463 596;600 52;52 2.9103 45 -
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4. Conclusion

Chemical synthesis and deposition of homogeneous CNO NS layer on GS have been 

achieved with a coverage level close to 90%. Then, highly (001)-textured LSMO films on 

NS/GS have been grown with a high structural quality by taking advantage of randomly 

dispersed CNO NS used as seed layer. In contrast, LSMO on glass without NS result in fully 

polycrystalline films without any texturation, as confirmed by XRD and EBSD analyses. The 

preferential growth of LSMO on NS leads to magnetic and transport properties between the 

polycrystalline and single crystal LSMO ones used as reference in this work. As example, Bsat 

and increase by 250 emu cm3 while TC, HC and 300K are reduced by 10 K, 180  104 T and  

5.67  104  cm, respectively when the buffer NS seed layer is deposited on GS. Hence, the 

coercivity of the textured LSMO/NS/GS films is divided by 2 compared to LSMO on GS, 

thus allowing to switch between a hard magnetically ferromagnetic LSMO on glass to an 

easier magnetically tuning LSMO on NS. Finally, the magnetization and the coercivity of 

textured films are very close to the single crystal ones. A further advantage is that a low field 

MR appears for textured films, which is absent for single-crystalline films but present for 

polycrystalline films. Accordingly, structural and physical properties are widely improved by 

the use of NS in the case of the integration of LSMO on glass and combine the properties of 

monocrystalline and polycrystalline films. 

Another notable advance is the possibility to preserve interesting physical properties of 

LSMO films grown at 550°C on NS/GS, which is not the case for polycrystalline films on GS. 

The reduction of the growth temperature opens new opportunities to integrate readily textured 

LSMO of high quality on silicon at lower temperature, without to consider the formation of 

native SiO2. Also, the reduction of the temperature preserves more thermally sensitive 

substrates. In the near future, a fine adjustment of the coverage level of the surface by NS 

should also allow to tune the physical properties of deposited films on more complicated 

surfaces.

To summarize, Ca2Nb3O10 nanosheets open new perspectives and opportunities for 

integration of perovskite structures like LSMO on various templates besides single crystal 

substrates. Thereby, diverse non-adapted substrates such as amorphous substrates (glass…) or 

crystalline substrates (silicon…) can be now considered while maintaining good structural and 

physical properties of films. This approach overcomes technological limitations for the use of 

complex oxides into CMOS-based applications. 
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Supporting Information

TEM brightfield micrograph of NS, AFM images, RHEED patterns, High-resolution -2 

diffractograms, X-Ray Reflectometry, SEM micrographs, Determination of Curie 

Temperature, Transport properties at low temperature
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