H. Miyajima, Aceruloplasminemia. Neuropathology, vol.1, pp.83-90, 2015.

F. Yang, S. L. Naylor, J. B. Lum, S. Cutshaw, J. L. Mccombs et al., Characterization, mapping, and expression of the human ceruloplasmin gene, Proc. Natl. Acad. Sci, vol.83, pp.3257-3261, 1986.

S. Bosio, M. De-gobbi, A. Roetto, G. Zecchina, E. Leonardo et al., Anemia and iron overload due to compound heterozygosity for novel ceruloplasmin mutations, Blood, vol.100, pp.2246-2248, 2002.

O. Loréal, B. Turlin, C. Pigeon, A. Moisan, M. Ropert et al., Aceruloplasminemia: new clinical, pathophysiological and therapeutic insights, J. Hepatol, vol.36, pp.851-856, 2002.

A. Finkenstedt, E. Wolf, E. Höfner, B. I. Gasser, S. Bösch et al., Hepatic but not brain iron is rapidly chelated by deferasirox in aceruloplasminemia due to a novel gene mutation, J. Hepatol, vol.53, pp.1101-1107, 2010.

B. N. Patel, R. J. Dunn, D. , and S. , Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain, J. Biol. Chem, vol.275, pp.4305-4310, 2000.

M. Sato and J. Gitlin, Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin, J. Biol. Chem, vol.266, pp.5128-5134, 1991.

B. N. Patel and S. David, A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes, J. Biol. Chem, vol.272, pp.20185-20190, 1997.

S. Osaki, D. A. Johnson, and E. Frieden, The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum, J. Biol. Chem, vol.241, pp.2746-2751, 1966.

N. E. Hellman, S. Kono, G. M. Mancini, A. Hoogeboom, G. De-jong et al., Mechanisms of copper incorporation into human ceruloplasmin, J. Biol. Chem, vol.277, pp.46632-46638, 2002.

Z. Harris, A. Durley, T. Man, and J. Gitlin, Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux, Proc. Natl. Acad. Sci. U. S. A, vol.96, p.10812, 1999.

S. Young, M. Fahmy, and S. Golding, Ceruloplasmin, transferrin and apotransferrin facilitate iron release from human liver cells, FEBS Lett, vol.411, p.93, 1997.

I. De-domenico, D. M. Ward, M. C. Di-patti, S. Y. Jeong, S. David et al., Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin, EMBO J, vol.26, pp.2823-2831, 2007.

S. Kono, K. Yoshida, N. Tomosugi, T. Terada, Y. Hamaya et al., Biological effects of mutant ceruloplasmin on hepcidin-mediated internalization of ferroportin, Biochim. Biophys. Acta BBA -Mol, pp.968-975, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00623314

A. Pietrangelo, The ferroportin disease, Blood Cells. Mol. Dis, vol.32, pp.131-138, 2004.

A. Pietrangelo, Ferroportin disease: pathogenesis, diagnosis and treatment, Haematologica, vol.102, pp.1972-1984, 2017.

E. Nemeth, S. Rivera, V. Gabayan, C. Keller, S. Taudorf et al., IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin, J. Clin. Invest, vol.113, pp.1271-1276, 2004.

D. M. Wrighting and N. C. Andrews, Interleukin-6 induces hepcidin expression through STAT3, Blood, vol.108, p.3204, 2006.

I. De-domenico, D. M. Ward, C. Langelier, M. B. Vaughn, E. Nemeth et al., The Molecular Mechanism of Hepcidin-mediated Ferroportin Down-Regulation, Mol. Biol. Cell, vol.18, p.2569, 2007.

I. Theurl, M. Theurl, M. Seifert, S. Mair, M. Nairz et al., Autocrine formation of hepcidin induces iron retention in human monocytes, Blood, vol.111, pp.2392-2399, 2008.

F. Skidmore, V. Drago, P. Foster, I. Schmalfuss, K. Heilman et al., Aceruloplasminaemia with progressive atrophy without brain iron overload: treatment with oral chelation, J Neurol Neurosurg Psychiatry, vol.79, pp.467-470, 2008.

S. Kono, H. Suzuki, K. Takahashi, Y. Takahashi, K. Shirakawa et al., Hepatic iron overload associated with a decreased serum ceruloplasmin level in a novel clinical type of aceruloplasminemia, Gastroenterology, vol.131, pp.240-245, 2006.

A. Piperno and M. Alessio, Aceruloplasminemia: waiting for an efficient therapy, Front. Neurosci, vol.12, p.903, 2018.

R. Jiang, C. Hua, Y. Wan, B. Jiang, H. Hu et al., Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain, J. Nutr, vol.145, p.1003, 2015.

L. A. Meyer, A. P. Durley, J. R. Prohaska, and Z. L. Harris, Copper transport and metabolism are normal in aceruloplasminemic mice, J. Biol. Chem, vol.276, pp.36857-36861, 2001.

L. Gouya, F. Muzeau, A. Robreau, P. Letteron, E. Couchi et al., Genetic study of variation in normal mouse iron homeostasis reveals ceruloplasmin as an HFE-hemochromatosis modifier gene, Gastroenterology, vol.132, pp.679-686, 2007.

H. Chen, Z. K. Attieh, H. Gao, G. Huang, T. Su et al., Age-related changes in iron homeostasis in mouse ferroxidase mutants, Biometals, vol.22, p.827, 2009.

K. Yamamoto, K. Yoshida, Y. Miyagoe, A. Ishikawa, K. Hanaoka et al., Quantitative evaluation of expression of iron-metabolism genes in ceruloplasmin-deficient mice, Biochim. Biophys. Acta, vol.1588, p.195, 2002.

B. R. Bacon, A. S. Tavill, G. M. Brittenham, C. Park, and R. Recknagel, Hepatic lipid peroxidation in vivo in rats with chronic iron overload, J. Clin. Invest, vol.71, pp.429-439, 1983.

S. Remy, V. Chenouard, L. Tesson, C. Usal, S. Ménoret et al., Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation, Sci. Rep, vol.7, p.16554, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01832141

T. Cavey, M. Ropert, M. De-tayrac, E. Bardou-jacquet, M. Island et al., Mouse genetic background impacts both on iron and non-iron metals parameters and on their relationships, Biometals Int. J. Role Met. Ions Biol. Biochem. Med, vol.28, p.733, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162386

F. Lainé, M. Ropert, C. Le-lan, O. Loréal, E. Bellissant et al., Serum ceruloplasmin and ferroxidase activity are decreased in HFE C282Y homozygote male iron-overloaded patients, J. Hepatol, vol.36, pp.60-65, 2002.

W. Breuer and Z. Cabantchik, A fluorescence-based one-step assay for serum non-transferrinbound iron, Anal. Biochem, vol.299, p.194, 2001.

F. Canonne-hergaux, S. Gruenheid, P. Ponka, and P. Gros, Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron, Blood, vol.93, pp.4406-4417, 1999.

E. Salaun, L. Lefeuvre-orfila, T. Cavey, B. Martin, B. Turlin et al., Myriocin prevents muscle ceramide accumulation but not muscle fiber atrophy during shortterm mechanical unloading, J. Appl. Physiol, vol.120, pp.178-187, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231413

P. Cornejo, P. Varela, L. A. Videla, and V. Fernández, Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver, Nitric Oxide, vol.13, pp.54-61, 2005.

L. Chen, S. Xiong, H. She, S. W. Lin, J. Wang et al., Iron causes interactions of TAK1, p21ras, and phosphatidylinositol 3-kinase in caveolae to activate I?B kinase in hepatic macrophages, J. Biol. Chem, vol.282, pp.5582-5588, 2007.

Y. Zhang, Y. Cheng, N. Wang, Q. Zhang, W. et al., The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia, Food Funct, vol.5, pp.1381-1388, 2014.

M. Poli, S. Luscieti, V. Gandini, F. Maccarinelli, D. Finazzi et al., Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrindependent hepcidin regulation, Haematologica, vol.95, pp.1832-1840, 2010.

N. K. Tangudu, N. Buth, P. Strnad, I. C. Cirstea, and M. V. Spasi?, Deregulation of Hepatic Mek1/2-Erk1/2 Signaling Module in Iron Overload Conditions, Pharmaceuticals, vol.12, p.70, 2019.

D. F. Wallace, L. Summerville, E. M. Crampton, D. M. Frazer, G. J. Anderson et al., Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload, Hepatology, vol.50, 1992.

T. Cavey, N. Pierre, K. Nay, C. Allain, M. Ropert et al., Simulated microgravity decreases circulating iron in rats: role of inflammation-induced hepcidin upregulation, Exp. Physiol, vol.102, pp.291-298, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01483855

A. E. Armitage, L. A. Eddowes, U. Gileadi, S. Cole, N. Spottiswoode et al., Hepcidin regulation by innate immune and infectious stimuli, Blood, vol.118, pp.4129-4139, 2011.

I. De-domenico, T. Y. Zhang, C. L. Koening, R. W. Branch, N. London et al., Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice, J. Clin. Invest, vol.120, pp.2395-2405, 2010.

H. Huang, M. Constante, A. Layoun, and M. M. Santos, Contribution of STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing stimuli, Blood, vol.113, pp.3593-3599, 2009.

C. Kersten, E. A. Sivertsen, M. E. Hystad, L. Forfang, E. B. Smeland et al., BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1, BMC Immunol, vol.6, p.9, 2005.

Y. Q. Li, B. Bin, Q. Q. Zheng, Y. Hong, and G. H. Zhuang, Quantitative study of iron metabolism-related genes expression in rat, Biomed. Environ. Sci, vol.26, pp.808-819, 2013.

A. Zhang, S. Xiong, H. Tsukamoto, and C. A. Enns, Localization of iron metabolismrelated mRNAs in rat liver indicate that HFE is expressed predominantly in hepatocytes, Blood, vol.103, pp.1509-1514, 2004.

P. A. Frischmeyer and H. C. Dietz, Nonsense-mediated mRNA decay in health and disease, Hum. Mol. Genet, vol.8, pp.1893-1900, 1999.

P. Guo, R. Cui, Y. Chang, W. Wu, Z. Qian et al., Hepcidin, an antimicrobial peptide is downregulated in ceruloplasmin-deficient mice, Peptides, vol.30, pp.262-266, 2009.

M. Ogimoto, K. Anzai, H. Takenoshita, K. Kogawa, Y. Akehi et al., Criteria for early identification of aceruloplasminemia, Intern. Med, vol.50, pp.1415-1418, 2011.

S. Cherukuri, N. A. Tripoulas, S. Nurko, and P. L. Fox, Anemia and impaired stress-induced erythropoiesis in aceruloplasminemic mice, Blood Cells. Mol. Dis, vol.33, pp.346-355, 2004.

B. K. Fuqua, Y. Lu, D. M. Frazer, D. Darshan, S. J. Wilkins et al., Severe iron metabolism defects in mice with double knockout of the multicopper ferroxidases hephaestin and ceruloplasmin, Cell. Mol. Gastroenterol. Hepatol, vol.6, pp.405-427, 2018.

F. Dupic, S. Fruchon, M. Bensaid, N. Borot, M. Radosavljevic et al., Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains, Gastroenterology, vol.122, pp.745-751, 2002.

F. Dupic, S. Fruchon, M. Bensaid, O. Loreal, P. Brissot et al., Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice, Gut, vol.51, pp.648-653, 2002.

M. Brower, M. Grace, C. M. Kotz, and V. Koya, Comparative analysis of growth characteristics of Sprague Dawley rats obtained from different sources, Lab. Anim. Res, vol.31, pp.166-173, 2015.

A. H. Tuttle, V. M. Philip, E. J. Chesler, and J. S. Mogil, Comparing phenotypic variation between inbred and outbred mice, Nat. Methods, vol.15, p.994, 2018.

A. G. Smith, P. Carthew, J. E. Francis, R. E. Edwards, and D. Dinsdale, Characterization and accumulation of ferritin in hepatocyte nuclei of mice with iron overload, Hepatology, vol.12, pp.1399-1405, 1990.

G. Ilyin, B. Courselaud, M. Troadec, C. Pigeon, M. Alizadeh et al., Comparative analysis of mouse hepcidin 1 and 2 genes: evidence for different patterns of expression and co-inducibility during iron overload, FEBS Lett, vol.542, pp.22-26, 2003.

B. Courselaud, M. Troadec, S. Fruchon, G. Ilyin, N. Borot et al., Strain and gender modulate hepatic hepcidin 1 and 2 mRNA expression in mice, Blood Cells. Mol. Dis, vol.32, pp.283-289, 2004.

P. Brissot, M. Ropert, C. Le-lan, and O. Loréal, Non-transferrin bound iron: A key role in iron overload and iron toxicity, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1820, pp.403-410, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739430

S. Jenkitkasemwong, C. Wang, R. Coffey, W. Zhang, A. Chan et al., SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis, Cell Metab, vol.22, pp.1-13, 2015.

L. Marques, A. Auriac, A. Willemetz, J. Banha, B. Silva et al., Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface, Blood Cells. Mol. Dis, vol.48, pp.110-120, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678537

P. Brissot and O. Loréal, ) Iron metabolism and related genetic diseases: A cleared land, keeping mysteries, J. Hepatol, vol.64, issue.2, pp.505-515

O. Loréal, T. Cavey, E. Bardou-jacquet, P. Guggenbuhl, M. Ropert et al., Iron, hepcidin, and the metal connection, Front. Pharmacol, vol.5, 2014.

G. Cartwright and M. Wintrobe, Copper metabolism in normal subjects, Am. J. Clin. Nutr, vol.14, pp.224-232, 1964.