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Abstract 25 

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop 26 

production and of ecosystem functions mediated by natural plant biodiversity. The complex 27 

effects on plants are however difficult to apprehend. Plant communities of field margins, 28 

vegetative filter strips or rotational fallows are confronted with agricultural pollutants through 29 

residual soil contamination and/or through drift, run-off and leaching events that result from 30 

chemical applications. Exposure to xenobiotics and heavy metals causes biochemical, 31 

physiological and developmental effects. However, the range of doses, modalities of 32 

exposure, metabolization of contaminants into derived xenobiotics, and combinations of 33 

contaminants result in variable and multi-level effects. Understanding these complex plant-34 

pollutant interactions cannot directly rely on toxicological or agronomical approaches that 35 

focus on the effects of field-rate pesticide applications. It must take into account exposure at 36 

root level, sublethal concentrations of bioactive compounds and functional biodiversity of the 37 

plant species that are affected. The present study deals with agri-environmental plant species 38 

of field margins, vegetative filter strips or rotational fallows in European agricultural 39 

landscapes. Root and shoot physiological and growth responses were compared under 40 

controlled conditions that were optimally adjusted for each plant species. Contrasted 41 

responses of growth inhibition, no adverse effect or growth enhancement depended on 42 

species, organ and nature of contaminant. However, all of the agricultural contaminants under 43 

study (pesticides, pesticide metabolites, heavy metals, polycyclic aromatic hydrocarbons) had 44 

significant effects under conditions of sublethal exposure on at least some of the plant species. 45 

The fungicide tebuconazole and polycyclic aromatic hydrocarbon fluoranthene, which gave 46 

highest levels of responses, induced both activation or inhibition effects, in different plant 47 

species or in different organs of the same plant species. These complex effects are discussed 48 
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in terms of dynamics of agri-environmental plants and of ecological consequences of 49 

differential root-shoot growth under conditions of soil contamination. 50 

51 
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Highlights : 57 

• Agri-environmental plants are directly confronted to soil agricultural pollutants. 58 

• Diverse residual chemicals affect agri-environmental plants at sublethal levels. 59 

• These effects are not only species-specific, but also root- and shoot-specific. 60 

• Pollutant-specific effects lead to differential root-shoot responses. 61 

• Root-shoot disequilibrium is one major consequence of agricultural soil pollution. 62 

 63 

64 
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1. Introduction 65 

Extensive use of chemicals in agriculture and industry has resulted in widespread 66 

environmental contamination with potential impact on environmental quality, human well-67 

being and planetary sustainability (Arias-Estévez et al., 2008; Persson et al., 2013; MacLeod 68 

et al., 2014; Rodríguez-Eugenio et al., 2018; Silva et al., 2019). On the basis of expected 69 

environmental concentration calculations taking into account a 15-cm depth of affected soil or 70 

waterbody (Peterson et al., 1994), worldwide consumption of 2.6-4.6 Tg of pesticides per year 71 

(Wilson and Tisdell, 2001; Zhang et al., 2011; Bringel and Couée, 2018) could theoretically 72 

result in yearly accumulations of 34-60 µg L-1 by dispersion over a global Earth surface of 73 

510x106 km2. On a regional scale, average application rates of pesticides per hectare of arable 74 

land can attain 6.5-60 kg ha-1 in Asia and South America (Carvalho, 2017), which may result 75 

in very high levels of expected environmental yearly accumulations of 4,333-40,000 µg L-1. 76 

Actual measurements in pesticide-contaminated soils show that residual persistence of 77 

pesticides (Alberto et al., 2017; Arias-Estévez et al., 2008; Jablonowsksi et al., 2010; Primost 78 

et al., 2017; Serra et al., 2013; Silva et al., 2018) can fall within these ranges of theoretical 79 

values of potential accumulation. In Argentinian agrosystems, expected environmental 80 

concentration calculation (Peterson et al., 1994) on the basis of annual applications (Primost 81 

et al., 2017) yields a glyphosate concentration of 2,600 µg L-1. This theoretical value is lower 82 

than the average measurement of 6,433 µg.kg-1 for glyphosate and its metabolite 83 

aminomethylphosphonate (AMPA) in soils of these Argentinian agrosystems (Primost et al., 84 

2017), thus emphasising the importance of persistence and pluri-annual accumulation.  85 

Moreover, agricultural and livestock activities are not only sources of agrochemicals, but also 86 

of heavy metals and polycyclic aromatic hydrocarbons (PAHs) that can accumulate in the 87 

environment as agriculture-related contaminants in parallel with pesticides and pesticide 88 

residues (Rodríguez-Eugenio et al., 2018). 89 
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Root-level exposure to such residual levels of xenobiotics and heavy metals causes a variety 90 

of biochemical, physiological and developmental effects on agricultural or natural plant 91 

species (Alberto et al., 2017; Serra et al., 2013, 2015a, 2015b; Zhang et al., 2014). Herbicides 92 

such as atrazine, glyphosate or imazethapyr are known to act through a major biochemical 93 

target (Holländer and Amrhein, 1980; Padgette et al., 1991; Rutherford & Krieger-Liszkay, 94 

2001; Qian et al., 2015; Sammons et al., 2018), that can be considered to be the canonical 95 

target mediating their mechanism of action (Piya et al., 2019). However, root-level effects of 96 

herbicides have often been shown to be disconnected from usual effects on canonical targets, 97 

thus suggesting alternative and noncanonical mechanisms of action under such conditions of 98 

exposure (Alberto et al., 2017, 2018; Qian et al., 2015; Serra et al., 2013, 2015a, 2015b). 99 

Moreover, exposure to sublethal doses, the diverse modalities of contaminant exposures, 100 

environmental and plant metabolization of contaminants into novel metabolites that can also 101 

be harmful and the presence of contaminant mixtures in the environment result in variable and 102 

multi-level effects (Armendáriz et al., 2016; Busi and Powles, 2009; Reeves et al., 2001; 103 

Serra et al., 2013). Soil pollution by anthropogenic chemicals is therefore a major concern for 104 

the sustainability of crop production (Rodríguez-Eugenio et al., 2018; Silva et al., 2019). Soil 105 

pollution is also a major concern for the efficiency of ecosystem services mediated by natural 106 

plant biodiversity (Rodríguez-Eugenio et al., 2018; Silva et al., 2019), such as the 107 

maintenance of pollinator diversity (Kuussaari et al., 2011), soil stabilization of field margins 108 

or pollution buffering (Mench et al., 2010; Serra et al., 2016). 109 

However, the range of soil pollution effects on plants is difficult to apprehend and remains to 110 

be fully understood (Rodríguez-Eugenio et al., 2018). Agri-environmental plant communities 111 

in field margins, vegetative filter strips (VFS) or rotational fallows are necessarily confronted 112 

with agricultural pollutants through residual soil contamination and/or through drift, run-off 113 

and leaching events that result from chemical applications (Gove et al., 2007; Helander et al., 114 
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2012; Rodríguez-Eugenio et al., 2018). On the one hand, in the context of VFS at the edge of 115 

agricultural fields, the confrontation of plant communities with pesticides and other 116 

agricultural contaminants is designed to mitigate the dispersion and the impact of pollutants in 117 

terrestrial and aquatic environments (Collins et al., 2014; Krutz et al., 2005; Serra et al., 2016; 118 

Stehle et al., 2011). On the other hand, plant biodiversity and functional group composition in 119 

agriculturally-intensive landscapes are affected by land-use practices and application rates of 120 

fertilizers and pesticides (Billeter et al., 2008; Liira et al., 2008). Understanding these 121 

complex plant-pollutant interactions cannot directly rely on toxicological or agronomical 122 

studies that focus on the effects of field-rate applications of pesticides on selected plant 123 

species. It must take into account the specificities of environmental exposure, such as 124 

exposure at root level, sublethal concentrations of bioactive compounds, exposure to derived 125 

metabolites and the functional biodiversity of the plant species that are affected. 126 

Application of such conditions has revealed that root growth was particularly sensitive to 127 

supposedly non-phytotoxic levels of xenobiotics or of their metabolized derivatives (Serra et 128 

al., 2013, 2015a, 2015b; Alberto et al., 2017). In parallel, major agricultural pollutants such as 129 

atrazine and glyphosate (Rodríguez-Eugenio et al., 2018; Silva et al., 2018, 2019) act on shoot 130 

chloroplastic targets. The present study therefore aims to characterize the potential 131 

perturbations of root and shoot growth under conditions of exposure to agricultural 132 

contaminants, taking into account the chemical diversity of contaminants and the diverse 133 

responses of plants [bird’s-foot trefoil (Lotus corniculatus), common buckwheat (Fagopyrum 134 

esculentum), cornflower (Centaurea cyanus), creeping bentgrass (Agrostis stolonifera), 135 

English ryegrass (Lolium perenne), red fescue (Festuca rubra), timothy grass (Phleum 136 

pratense), white Dutch clover (Trifolium pratense), yellow chamomile (Anthemis tinctoria)] 137 

that are commonly found in field margins, VFS or rotational fallows in European agricultural 138 

landscapes (Billeter et al., 2008; Liira et al., 2008; Kuussaari et al., 2011; Stehle et al., 2011; 139 
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Toivonen et al., 2013; Serra et al., 2016). Root and shoot physiological and growth responses 140 

were compared under controlled conditions that were optimally adjusted for each plant 141 

species, with the parallel analysis of the unrelated model plant species Arabidopsis thaliana as 142 

a reference species. The herbicide glyphosate, the glyphosate metabolite AMPA, the herbicide 143 

atrazine, the atrazine metabolite hydroxyatrazine, the fungicide tebuconazole, copper, zinc 144 

and the PAH fluoranthene all had significant effects under conditions of sublethal exposure 145 

on at least two of the plant species under study. However, this diversity of agricultural 146 

contaminants (pesticides, pesticide metabolites, heavy metals, PAHs) revealed contrasted 147 

responses of growth stimulation, no adverse effect or growth inhibition, depending on plant 148 

species, plant organ and nature of contaminant. Tebuconazole and fluoranthene, which gave 149 

the highest level of responses, could induce both activation or inhibition effects, in different 150 

plant species or in different organs of the same plant species. These complex effects are 151 

discussed in terms of plant dynamics in agri-environmental contexts and of ecological 152 

consequences of differential root-shoot growth under conditions of soil contamination. 153 

2. Materials and methods 154 

2.1. Plant material 155 

Seeds of Arabidopsis thaliana (Columbia, Col-0) were obtained from the Nottingham 156 

Arabidopsis Stock Center, and propagated under laboratory-controlled conditions. Seeds of 157 

Agrostis stolonifera (cv. Penncross), Anthemis tinctoria (bulk seeds), Centaurea cyanus (bulk 158 

seeds), Fagopyrum esculentum (bulk seeds), Festuca rubra (cv. Herald), Lolium perenne (cv. 159 

Brio), Lotus corniculatus (cv. Leo), Phleum pratense (cv. Kaba), and Trifolium pratense (cv. 160 

Violetta) were obtained from the Phytosem (Gap, Hautes-Alpes, France) seed company. 161 

These seeds did not have any pesticide treatment coating. 162 

2.2. Growth conditions 163 
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Seeds of Arabidopsis thaliana were surfaced sterilized in 3% bayrochlore:ethanol (1:1, v/v), 164 

rinsed in absolute ethanol, and dried overnight. Germination and growth were carried out 165 

under axenic conditions in square Petri dishes. After seed sowing, Petri dishes were placed in 166 

the dark at 4 °C for 72 h in order to break dormancy and homogenize germination, and were 167 

then transferred to a control growth chamber at 22 °C/20 °C under a 16 h light (100 µmol m-2 168 

s-1)/8 h dark regime. Growth medium consisted of 0.8% (w/v) agar in Hoagland basal salt mix 169 

(H2395, Sigma-Aldrich) adjusted to pH 6, in the absence of any additional sucrose or soluble 170 

carbohydrate (Ramel et al., 2009b; Serra et al., 2013, 2015a; Nuttens and Gross, 2017). 171 

Seeds of Agrostis stolonifera, Anthemis tinctoria, Centaurea cyanus, Fagopyrum esculentum, 172 

Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, and Trifolium pratense 173 

were surface-sterilized in ethanol (1 min) and bayrochlore:tween at various concentrations of 174 

bayrochlore (20 min), and rinsed in sterile distilled water. Germination and growth were 175 

carried out under axenic conditions in square Petri dishes (Agrostis stolonifera, Anthemis 176 

tinctoria, Festuca rubra, Lotus corniculatus, Phleum pratense, Trifolium pratense) or in 30-177 

mL Falcon tubes (Centaurea cyanus, Fagopyrum esculentum, Lolium perenne). Growth 178 

medium in Petri dishes consisted of 0.8% (w/v) agar in Hoagland basal salt mix (H2395, 179 

Sigma-Aldrich) adjusted to pH 6. Growth medium in 30-mL Falcon tubes consisted of 0.3% 180 

(w/v) agar in Hoagland basal salt mix (H2395, Sigma-Aldrich) adjusted to pH 6. Xenobiotics 181 

(glyphosate, AMPA, atrazine, hydroxyatrazine, tebuconazole) and heavy metals (Cu2+ added 182 

as CuSO4, Zn2+ added as ZnSO4) were axenically added to cooled-down melted agar-183 

Hoagland medium prior to pouring into Petri dishes or Falcon tubes. Xenobiotic and heavy 184 

metal treatments were carried out by direct exposure starting at early development by seed 185 

sowing on chemical-containing growth medium. 186 

After seed sowing, Petri dishes or Falcon tubes were placed in the dark at 4 °C for 3 to 8 days 187 

(according to plant species) in order to break dormancy and homogenize germination. Seeds 188 
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of Centaurea cyanus did not undergo any treatment of dormancy break. Sown Petri dishes or 189 

Falcon tubes were then transferred to a control growth chamber at 22 °C/20 °C under a 16 h 190 

light (100 µmol m-2 s-1)/8 h dark regime. Analysis of physiological and growth parameters 191 

was carried out after 7 (Agrostis stolonifera, Anthemis tinctoria, Festuca rubra, Lotus 192 

corniculatus, Phleum pratense, Trifolium pratense), 10 (Fagopyrum esculentum, Lolium 193 

perenne), 12 (Centaurea cyanus) or 14 (Arabidopsis thaliana) days of growth in the absence 194 

or presence of xenobiotics or heavy metals. 195 

2.3. Analysis of growth responses 196 

Plantlets in Petri dishes were directly photographed. Seedlings in Falcon tubes were aligned 197 

on glass plates and photographed. Lengths of main root and elongating leaf were measured 198 

using ImageJ software. Results were expressed as root or leaf length or as percentage of 199 

inhibition of growth [(Growthcontrol – Growthtreatment)/Growthcontrol] relatively to the control in 200 

the absence of xenobiotic or heavy metal. The action of xenobiotic and heavy metal 201 

treatments on Arabidopsis thaliana root growth was characterized by median effective 202 

concentrations (EC50) resulting in a 50% inhibitory response. The nine agri-environmental 203 

plant species (Agrostis stolonifera, Anthemis tinctoria, Centaurea cyanus, Fagopyrum 204 

esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium 205 

pratense) were exposed to the eight xenobiotics and heavy metals at the EC50 inhibitory 206 

concentrations determined for Arabidopsis thaliana root growth.  207 

2.4. Analysis of physiological parameters 208 

Pigments were extracted by grinding shoots of seedlings in 80% (v/v) acetone, and the 209 

absorbance of the resulting extracts was measured at three wavelengths: 663, 646, and 470 210 

nm. Levels of chlorophylls and total carotenoids (xanthophylls and carotenes) in these 211 

extracts were determined from the equations given by Lichtenthaler and Wellburn (1983), as 212 

previously described (Serra et al., 2013). 213 
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2.5. Data analysis 214 

Physiological and growth parameters were measured on five to thirty independent biological 215 

replicates. Results were given as the mean (± SEM) of these determinations. Statistical 216 

analysis was carried out with the R version 3.1.3 software. Pairwise comparisons of means 217 

used the non-parametric Mann–Whitney–Wilcoxon test. In order to test and visualize 218 

relationships between treatments and response parameters, principal component analysis 219 

(PCA) based on the correlation matrix (Ramel et al., 2009a) was carried out using the 220 

FactoMineR package of R. 221 

3. Results 222 

3.1. Characterization of sublethal effects of root-level agricultural contaminants on the model 223 

plant species Arabidopsis thaliana 224 

In line with the molecular effects of soluble sugars on xenobiotic stress responses (Ramel et 225 

al., 2007, 2009a, 2009b), the toxicological impact of xenobiotics and heavy metals on 226 

Arabidopsis plantlets was significantly modified in the presence of additional sucrose (data 227 

not shown). Whereas the inhibitory effects of atrazine were lifted by exogenous sucrose, 228 

glyphosate showed the same level of toxicity in the absence or presence of exogenous sucrose 229 

(data not shown). Cultivation in the absence of exogenous soluble sugars was therefore 230 

essential to reflect a realistic evaluation of comparative chemical stress sensitivity, as 231 

advocated by Nuttens and Gross (2017). 232 

Since exposure was carried out at root level, and given the sensitivity of roots to xenobiotic 233 

and heavy metal stress (Alberto et al., 2017; Serra et al. 2013, 2015a), dose-response 234 

relationships were derived from measurements of primary root growth (Fig. 1). All of the 235 

xenobiotics and heavy metals under study, glyphosate (Fig. 1), AMPA, atrazine, 236 

hydroxyatrazine, tebuconazole, copper, zinc and fluoranthene (data not shown), had inhibitory 237 

effects on the root growth of Arabidopsis plantlets, with typical hyperbolic or sigmoid 238 
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inhibition curves. EC50 values (Table 1) were estimated graphically from these hyperbolic or 239 

sigmoid curves of inhibition. The EC50 values for glyphosate, AMPA, atrazine, and 240 

hydroxyatrazine agreed with previous analyses under similar modalities of exposure (Serra et 241 

al., 2013; Sulmon et al., 2004). 242 

In contrast, in the case of tebuconazole, the EC50 value was much higher than the inhibitory 243 

concentrations described by Serra et al. (2013). In the case of Zn, Cu and fluoranthene, direct 244 

comparisons with previous studies could not be carried out because of major discrepancies in 245 

the modalities of exposure. The much lower EC50 value for Zn relatively to that described by 246 

Richard et al. (2011) reflected a higher sensitivity to Zn toxicity that could be ascribed to the 247 

absence of exogenous sucrose in the present study. In contrast, the EC50 for Cu was very 248 

similar to that resulting from exposure of 3-week-old Arabidopsis plants under hydroponics 249 

conditions in the absence of exogenous sucrose (Lequeux et al., 2010). As previously 250 

described for the analysis of phenanthrene effects on Arabidopsis (Alkio et al., 2005), the 251 

relatively high range of fluoranthene concentrations (up to 550 µM) exceeded water 252 

solubility. However, the phytotoxicity of PAHs is also induced by contact (Paškova et al., 253 

2009). Thus, in line with the effects of phenanthrene (Alkio et al., 2005), fluoranthene had a 254 

significant effect on primary root growth (Alkio et al., 2005), with an EC50 value (532 µM) 255 

that was within the range of inhibitory PAH concentrations (Alkio et al., 2005). 256 

Finally, the fungicide tebuconazole and Cu were the most highly effective non-herbicide 257 

chemical stressors, in agreement with previously-described side effects of tebuconazole 258 

treatment (Serra et al., 2013) and the high toxicity of copper (Lequeux et al., 2010) in plants. 259 

3.2. Effects of sublethal levels of root-level agricultural contaminants on root growth of agri-260 

environmental plant species 261 

Xenobiotic and heavy metal exposure of the agri-environmental plant species was carried out 262 

in the absence of exogenous soluble sugars, under growth conditions that were similar to 263 
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those of the Arabidopsis study. Certain conditions of seed sterilisation (percentage of 264 

bayrochlore; duration of treatment) and stratification (duration of low temperature treatment) 265 

were adjusted for each plant species in order to optimise germination efficiency and axenic 266 

growth (data not shown). In order to take into account the growth characteristics of each 267 

species, experiments were carried out either in Petri dishes or in 30-mL Falcon tubes as 268 

described in Materials and Methods. The nine agri-environmental plant species were 269 

subjected during germination and early growth to xenobiotic and heavy metal concentrations 270 

corresponding to the EC50 values of impact on root growth of Arabidopsis plantlets (Fig. 1, 271 

Table 1), except in the case of glyphosate and AMPA, which were applied at concentrations 272 

of respectively 1 µM (instead of EC50 = 0.75 µM) and 50 µM (instead of EC50 = 30 µM). 273 

All of the nine agri-environmental species showed significant root responses to at least some 274 

of the xenobiotics or heavy metals (Fig. 2), except red fescue, which showed responses that 275 

were not significantly different from control. Treatment with herbicide compounds and 276 

metabolites, glyphosate, AMPA, atrazine and hydroxyatrazine, resulted in either a no 277 

observable adverse effect (NOAE) situation or inhibition of root growth. Tebuconazole, Zn, 278 

Cu or fluoranthene showed significant inhibitory effects on root growth, for instance in the 279 

case of yellow chamomile (Anthemis tinctoria) and cornflower (Centaurea cyanus) (Fig. 2). 280 

However, in parallel, tebuconazole, Zn, Cu or fluoranthene enhanced root growth of bird’s-281 

foot trefoil (Lotus corniculatus), creeping bentgrass (Agrostis stolonifera), and English 282 

ryegrass (Lolium perenne) (Fig. 2; supplementary data 1), thus suggesting the induction of 283 

hormetic effects (Belz et al., 2014; Dyer, 2018; Velini et al., 2008). 284 

Tebuconazole and fluoranthene induced the highest level of responses, with highly positive 285 

effects on root growth of Lolium perenne and highly negative effects on root growth of 286 

Anthemis tinctoria, relatively to all or most of the other plant species (supplementary data 1). 287 

Zn gave the lowest level of responses, with NOAE interactions in Trifolium pratense, 288 
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Agrostis stolonifera, Festuca rubra, Phleum pratense, Lolium perenne and Fagopyrum 289 

esculentum. On the other hand, species-specific behaviours were significantly contrasted. 290 

Root growth of yellow chamomile (Anthemis tinctoria) and cornflower (Centaurea cyanus) 291 

was negatively affected by all or most of xenobiotic or heavy metal treatments. Root growth 292 

of bird’s-foot trefoil (Lotus corniculatus), creeping bentgrass (Agrostis stolonifera), English 293 

ryegrass (Lolium perenne) and red fescue (Festuca rubra) showed contrasted chemical-294 

specific responses, with a mixture of negative and positive responses. 295 

3.3. Effects of sublethal levels of root-level agricultural contaminants on shoot growth of 296 

agri-environmental plant species 297 

The impact of xenobiotics and heavy metals on shoot growth was characterized under the 298 

same conditions of cultivation and treatment as those described in subsection 3.2. Root-level 299 

exposure can result in xenobiotic or heavy metal translocation throughout the plant and 300 

targeting of shoot and leaf mechanisms and/or root-level interactions or perturbations can lead 301 

to modifications of shoot growth and development (Serra et al., 2013,, 2015a; Sulmon et al., 302 

2007). In all of the nine species, shoot growth significantly responded to at least some of the 303 

xenobiotics or heavy metals (Fig. 3), thus showing the involvement of root-shoot interactions 304 

in the response to root-level exposure. 305 

Treatment with herbicide compounds and metabolites, glyphosate, AMPA, atrazine and 306 

hydroxyatrazine, resulted in either a NOAE situation or inhibition of shoot growth. AMPA 307 

gave the lowest level of responses, with NOAE shoot growth interactions in all of the nine 308 

agri-environmental plant species. In contrast with their effects on root growth (Fig. 2), 309 

tebuconazole and fluoranthene did not show any enhancement effets on shoot growth (Fig. 3), 310 

but induced either a NOAE situation or inhibition of shoot growth (Fig. 3). In contrast, Zn and 311 

Cu had significant enhancement effects on shoot growth of respectively white Dutch clover 312 

(Trifolium pratense) and red fescue (Festuca rubra) (Fig. 3; supplementary data 1), thus 313 
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suggesting the induction of hormetic effects (Belz et al., 2014; Dyer, 2018; Velini et al., 314 

2008). Tebuconazole induced the highest level of shoot growth inhibition, especially in 315 

bird’s-foot trefoil (Lotus corniculatus) and cornflower (Centaurea cyanus) (Fig. 3; 316 

supplementary data 1). Moreover, tebuconazole was the only contaminant that affected shoot 317 

growth of nearly all of the nine agri-environmental plant species (Fig. 3). Zn treatment gave 318 

the most contrasted responses with highly positive effects on shoot growth of Trifolium 319 

pratense and highly negative effects on shoot growth of Lotus corniculatus and Centaurea 320 

cyanus (Fig. 3; supplementary data 1). 321 

On the other hand, species-specific behaviours were significantly contrasted. Shoot growth of 322 

bird’s-foot trefoil (Lotus corniculatus) and cornflower (Centaurea cyanus) was negatively 323 

affected by a range of xenobiotic or heavy metal treatments (Fig. 3). Shoot growth of white 324 

Dutch clover (Trifolium pratense) and  red fescue (Festuca rubra) showed contrasted 325 

chemical-specific responses, with a mixture of negative and positive responses (Fig. 3). 326 

Moreover, in bird’s-foot trefoil (Lotus corniculatus) and English ryegrass (Lolium perenne), 327 

significant inhibition of shoot growth by tebuconazole, Zn or fluoranthene did not correlate 328 

with inhibition of root growth (Fig. 3), thus demonstrating root-shoot translocation of toxic 329 

compounds or root-shoot crosstalk of root-level exposure. 330 

3.4. Species-specific analysis of the effects of sublethal levels of root-level agricultural 331 

contaminants on growth and development of agri-environmental plant species 332 

The comparison of root and shoot responses (Table 2) highlighted strikingly different 333 

behaviours of the nine agri-environmental plant species towards to the different xenobiotics 334 

and heavy metals, with cases of general tolerance (Festuca rubra, Lolium perenne) and cases 335 

of general sensitivity (Lotus corniculatus, Centaurea cyanus, Anthemis tinctoria). Analysis of 336 

the effects of xenobiotics and heavy metals on the levels of carotenoids and chlorophylls did 337 

not reveal any clear relationship between the decrease or increase of carotenoids and 338 
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chlorophylls and growth responses (data not shown). For example, both pollutant-sensitive 339 

species, such as Centaurea cyanus and Anthemis tinctoria, and the pollutant-tolerant species 340 

Festuca rubra showed stable levels of chlorophylls and carotenoids across the different 341 

xenobiotic and heavy metal treatments. Moreover, negative or positive variations of 342 

chlorophylls and carotenoids were found to be xenobiotic-specific. Another pollutant-343 

sensitive species, Lotus corniculatus, showed a 30% (± 5, SEM) decrease of carotenoid levels 344 

in the presence of atrazine. In the case of pollutant-tolerant species, chlorophyll levels showed 345 

a 55% (± 6, SEM) increase in Lolium perenne under conditions of tebuconazole treatment and 346 

a 67% (± 15, SEM) increase in Agrostis stolonifera under conditions of glyphosate treatment.  347 

This differential behaviour was further analysed by PCA of root and shoot growth responses 348 

(Fig. 4). Distribution along the two axes on the first plane (Dim1 and Dim2) identified five 349 

types of plant-contaminant interactions (Fig. 4A): (i) highly-tolerant red fescue (Festuca 350 

rubra), which was negatively affected exclusively by the effects of tebuconazole on shoot 351 

growth (Fig. 3), (ii) a central cluster comprising creeping bentgrass (Agrostis stolonifera), 352 

timothy grass (Phleum pratense) and English ryegrass (Lolium perenne), which maintained 353 

significant growth in the presence of the different agricultural contaminants (Fig. 3), (iii)  a 354 

cluster comprising white Dutch clover (Trifolium pratense),  yellow chamomile (Anthemis 355 

tinctoria) and common buckwheat (Fagopyrum esculentum), which showed significant 356 

sensitivity of root growth to glyphosate and tebuconazole (Fig. 3), (iv) cornflower (Centaurea 357 

cyanus), which showed high sensitivity of root growth to AMPA and copper (Fig. 3), (v) 358 

bird’s-foot trefoil (Lotus corniculatus), which showed high sensitivity of shoot growth to 359 

glyphosate, hydroxyatrazine, tebuconazole and zinc (Fig. 3). Hierarchical classification (Fig. 360 

4B) revealed a slightly different clustering of four types of responses: (i) highly-tolerant red 361 

fescue (Festuca rubra), (ii) a central cluster comprising moderately tolerant English ryegrass 362 

(Lolium perenne), creeping bentgrass (Agrostis stolonifera), timothy grass (Phleum pratense), 363 
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yellow chamomile (Anthemis tinctoria), white Dutch clover (Trifolium pratense) and common 364 

buckwheat (Fagopyrum esculentum), (iii) cornflower (Centaurea cyanus), (iv) bird’s-foot 365 

trefoil (Lotus corniculatus). Cornflower (Centaurea cyanus) and bird’s-foot trefoil (Lotus 366 

corniculatus) showed the highest level of shoot growth sensitivity. 367 

Festuca rubra and the Agrostis stolonifera-Phleum pratense-Lolium perenne cluster showed a 368 

common response pattern towards the 8 different agricultural contaminants (Fig. 4C). In 369 

contrast, the Trifolium pratense-Anthemis tinctoria-Fagopyrum esculentum cluster, Centaurea 370 

cyanus and Lotus corniculatus showed patterns of responses that were strongly driven by 371 

glyphosate, AMPA or hydroxyatrazine (Fig. 4C), thus highlighting the potentially important 372 

action of herbicide metabolites on plant community dynamics in agricultural landscapes. 373 

Whereas most root-related and shoot-related vectors showed parallel effects, Zn and 374 

glyphosate showed strikingly different effects on root and shoot growth (Fig. 4C), thus 375 

suggesting differential modes of action at root and shoot level. This would agree with the 376 

multiple roles and multiple sites of action of Zn (Richard et al., 2011; Rouached, 2013) and 377 

with the involvement of glyphosate in other processes (Serra et al., 2013; Orcaray et al. 2010; 378 

Vivancos et al., 2011) than its canonical inhibition of EPSPS (Padgette et al., 1991), as 379 

described in subsection 3.1. 380 

4. Discussion 381 

4.1. Agri-environmental plant species can be affected by a large array of root-level 382 

agricultural contaminants at residual concentrations 383 

The nine agri-environmental plant species of the present study were generally less sensitive to 384 

xenobiotics and heavy metals than the reference species Arabidopsis thaliana, except for 385 

Anthemis tinctoria and Centaurea cyanus which were oversensitive to respectively 386 

tebuconazole and AMPA. In Arabidopsis thaliana, atrazine and glyphosate were the most 387 

effective chemical stressors with EC50 values lower than 1 µM, which could be ascribed to 388 
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the impact of their herbicide activity. The canonical targets of their mode of action are well 389 

characterized, with atrazine targeting the D1 protein of photosystem II (PSII) (Rutherford & 390 

Krieger-Liszkay, 2001), and glyphosate targeting 5-enolpyruvylshikimate-3-phosphate 391 

synthase (EPSP) (Holländer and Amrhein, 1980; Padgette et al., 1991; Sammons et al., 2018). 392 

The present EC50 value for atrazine (0.5 µM) was within the range of half maximal inhibitory 393 

concentrations (IC50=0.4-0.8 µM) for inhibition of PSII fluorescence in isolated pea 394 

thylakoids (Jursinic & Stemler, 1983), and in agreement with previously-described 395 

correlations between PSII inhibition and root growth inhibition (Alberto et al., 2017). In 396 

contrast, the present EC50 value for glyphosate (0.75 µM) was lower than the 6-37 µM IC50 397 

values or the 16.1 (± 2.6) µM IC50 value reported for inhibition of purified 5-398 

enolpyruvylshikimate-3-phosphate synthase (EPSPS) respectively from different plant species 399 

(Padgette et al., 1991) or from Arabidopsis thaliana (Sammons et al., 2018). This discrepancy 400 

suggested that glyphosate affected additional noncanonical targets in parallel with its action 401 

on EPSPS. Indeed, glyphosate toxicity in plants has been hypothesised to involve multiple 402 

mechanisms in addition to EPSPS inhibition (Serra et al., 2013; Orcaray et al. 2010; Vivancos 403 

et al., 2011). In contrast with Arabidopsis thaliana, many of the agri-environmental species 404 

under study showed no decrease of root growth in response to these EC50 levels of atrazine 405 

and glyphosate (Fig. 2). 406 

Moreover, the effects of tebuconazole, Zn, Cu and fluoranthene on root growth involved both 407 

inhibition and activation rather than mere inhibition as in the case of Arabidopsis, thus 408 

highlighting major species-specific differences of mechanisms and responses. However, all of 409 

these conditions affected root growth of at least two of the nine plant species under study, 410 

with wide-ranging impacts for tebuconazole and hydroxyatrazine and narrow impacts for 411 

atrazine, Zn and Cu. Moreover, glyphosate, atrazine, hydroxyatrazine, tebuconazole, Zn and 412 

fluoranthene affected both root growth and shoot growth. All of the conditions of exposure 413 
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resulted in sublethal effects, in accordance with the general effects of residual contaminants in 414 

the environment. 415 

The eight xenobiotic and heavy metal compounds of the present study are found in 416 

agricultural landscapes and field margins (Alberto et al., 2017; He et al., 2005; Hildebrandt et 417 

al., 2009; Jiang et al., 2018; Primost et al., 2017; Serra et al. 2013, 2016; Silva et al., 2018). 418 

The parallel analysis of pesticide-related compounds (glyphosate, AMPA, atrazine, 419 

hydroxyatrazine, tebuconazole), heavy metals (Cu, Zn) and polycyclic aromatic hydrocarbons 420 

(fluoranthene) thus gave a more realistic view of potential agriculture-related contaminations 421 

than the exclusive study of pesticide contaminants (Serra et al., 2016). The levels of exposure 422 

were lower than or similar to the theoretical values of potential accumulation described in 423 

section 1. The concentration of atrazine (100 µg L-1) corresponded to environmental 424 

concentrations commonly found in soils, waters and sediments (Alberto et al., 2017; 425 

Jablonowski et al., 2010). The concentration of glyphosate (169 µg L-1) was lower than 426 

observed environmental values in soils and suspended particulate matter (Ghanem et al., 427 

2007; Primost et al., 2017; Silva et al., 2018) and than experimental concentrations used in 428 

mechanistic (Orcaray et al., 2010) or ecotoxicological (Saunders et al., 2013; Soares et al., 429 

2019) studies of root-zone impact of residual concentrations. It was for instance much lower 430 

than the average concentration of glyphosate in Argentinian agrosystems [2,229 (± 476) 431 

µg.kg-1] (Primost et al., 2017) and than the lowest experimental concentrations used by 432 

Orcaray et al. (2010) (53 mg L-1) or Saunders et al. (2013) (10 mg kg-1). The concentration of 433 

fluoranthene was also lower than observed PAH contaminating levels in the environment 434 

(Rodríguez-Eugenio et al., 2018). The concentration of AMPA (5,550 µg L-1) corresponded to 435 

environmental values that have been measured in agricultural landscapes (Ghanem et al., 436 

2007; Primost et al., 2017; Silva et al., 2018), such as Argentinian agrosystems, which show 437 

an average concentration of 4,204 (± 2,258) µg.kg-1. The concentration of tebuconazole 438 
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corresponded to high environmental levels that have been described for individual fungicides 439 

(Rial-Otero et al., 2004). The concentrations of Cu or Zn also corresponded to high 440 

environmental levels that have been described in industrial polluted soils (Dazy et al., 2008). 441 

In contrast, the concentration of hydroxyatrazine (5,000 µg L-1) was significantly higher than 442 

currently-described (up to 640 µg.kg-1) environmental values (Alberto et al., 2017; 443 

Jablonowski et al., 2010; Lerch et al., 1999). Moreover, none of the nine agri-environmental 444 

plant species under study showed any oversensitivity to hydroxyatrazine (Fig. 2) relatively to 445 

that of Arabidopsis thaliana. 446 

Thus, the present results indicated that glyphosate, AMPA, atrazine, tebuconazole, Zn, Cu and 447 

fluoranthene could not be considered as innocuous in terms of plant-contaminant interactions 448 

under environmental conditions. Residual environmental levels of both glyphosate and its 449 

metabolite AMPA were likely to affect Trifolium pratense, Anthemis tinctoria, Centaurea 450 

cyanus and Fagopyrum esculentum, and residual environmental levels of atrazine were likely 451 

to affect Lotus corniculatus and Anthemis tinctoria. The significant sensitivity of Trifolium 452 

pratense, Anthemis tinctoria, Centaurea cyanus and Fagopyrum esculentum to low levels of 453 

glyphosate suggested the possibility that effects under environmental conditions are more 454 

drastic than observed in the present study. The significant sensitivity of Centaurea cyanus to 455 

AMPA (Fig. 2) and the influence of AMPA and hydroxyatrazine on the patterns of responses 456 

of Trifolium pratense, Anthemis tinctoria, Fagopyrum esculentum and Lotus corniculatus 457 

(Fig. 4) underlined the potential environmental impact of herbicide metabolites., 458 

Such an impact of chemically-distinct compounds, with established bioactivity or supposed 459 

inactivation, and such a diversity of sensitivities emphasise the need to expand the range of  460 

pesticide tests in order to improve predictive power on the environmental impacts of 461 

pesticides (Milner and Boyd, 2017). Moreover, cumulative exposures can result in growth 462 

disruption that is not reducible to the sum of individual effects because of potential synergistic 463 
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or antagonistic interactions between contaminants (Alberto et al., 2017). There are therefore 464 

environmental situations where the combined effects of mixtures of xenobiotics and/or heavy 465 

metals on plant growth and development may be more drastic than the predicted effects 466 

construed from single contaminant exposure experiments. 467 

4.2.. Modes of action of root-level agricultural contaminants and risk assessment of 468 

differential root-shoot growth under conditions of soil contamination 469 

The present results under controlled conditions emphasised the direct action of chemical 470 

stressors on plant tissues. The effects of chemical stressors have been experimentally 471 

characterized in a limited number of plant species, and their targets and mechanisms of action 472 

remain to be fully investigated (Alberto et al., 2017, 2018; Orcaray et al., 2010; Serra et al., 473 

2013, 2015; Vivancos et al., 2011). Even widely-used herbicides with well-known 474 

chloroplast-localized canonical sites of action, such as glyphosate and atrazine, have 475 

additional noncanonical effects that particularly affect signaling mechanisms, hormone 476 

dynamics, developmental processes and root growth (Alberto et al., 2017, 2018; Couée et al., 477 

2013; Dogramaci et al., 2015; Orcaray et al., 2010; Ramel et al., 2012; Serra et al., 2013, 478 

2015; Vivancos et al., 2011). Moreover, the corresponding metabolites, AMPA and 479 

hydroxyatrazine, can significantly affect plant metabolism and growth in the absence of 480 

observed effects on the canonical targets of parent molecules, thus implying alternative 481 

mechanisms of action (Alberto et al., 2017, 2018; Gomes et al., 2016; Serra et al., 2013, 482 

2015). 483 

The present comparative study confirmed the importance of noncanonical patterns of 484 

responses to glyphosate and atrazine. The significant effects on root growth in the absence of 485 

effects on shoot growth in several plant species (Trifolium pratense, Anthemis tinctoria, 486 

Fagopyrum esculentum) could be related to the root-specific effects that have been discovered 487 

in Arabidopsis thaliana and Lolium perenne (Alberto et al., 2017, 2018; Serra et al., 2013, 488 
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2015), and showed that root-specific effects of glyphosate and atrazine through root-level 489 

exposure can affect natural plant communities. The exclusive effects of AMPA on root 490 

growth, rather than on shoot growth, were coherent with a similar differential impact 491 

previously described in Lolium perenne (Serra et al., 2015). The effects of AMPA were 492 

usually similar to or weaker than the effects of glyphosate (Fig. 2, Fig. 3). However, AMPA 493 

decreased root growth in the same plant species (Trifolium pratense, Anthemis tinctoria, 494 

Centaurea cyanus, Fagopyrum esculentum) that were affected by glyphosate at root level 495 

(Fig. 2), thus suggesting potential additive effects on natural plant communities given that the 496 

co-occurrence of both compounds appears to be ubiquitous in soil (Primost et al., 2017; Silva 497 

et al., 2018). 498 

In contrast, the effects of atrazine and hydroxyatrazine did not exactly follow the same 499 

pattern, with parallel effects of both compounds on root and shoot growth of Lotus 500 

corniculatus and exclusive effects of hydroxyatrazine on root and shoot growth of Agrostis 501 

stolonifera  and Phleum pratense (Fig. 2, Fig. 3). Moreover, in several cases (Fig. 2, Fig. 3), 502 

hydroxyatrazine showed greater toxicity than atrazine. These important and specific effects of 503 

hydroxyatrazine on root growth, especially in Agrostis stolonifera, Phleum pratense, and 504 

Centaurea cyanus, were coherent with root-level effects (Alberto et al., 2017) and regulation 505 

effects on root development genes (Alberto et al., 2018) that have been previously described 506 

in Arabidopsis thaliana. The case of Trifolium pratense, where hydroxyatrazine decreased 507 

shoot growth in the absence of root growth inhibition, suggested that hydroxyatrazine may 508 

also have a shoot-related target. The mechanisms involved in the high toxicity of  509 

hydroxyatrazine remain to be characterized. They may be related to interferences of the 510 

triazine structure with cytokinin signaling (Couée et al., 2013; Alberto et al., 2017). The 511 

effects of tebuconazole, fluoranthene, Cu and Zn on plant growth are not related to actions on 512 

specific biochemical targets, and must involve a mixture of nutritional, biochemical, oxidative 513 
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stress and regulatory modes of action (Alkio et al., 2005; Lequeux et al., 2010; Paškova et al., 514 

2006; Rouached, 2013; Serra et al., 2015; Shishatskaya et al., 2018; Sverdrup et al., 2003). 515 

The diverse pattern of responses (Fig. 2, Fig. 3) could not therefore be ascribed to a specific 516 

mechanism. Moreover, in species-specific cases, all of these compounds could induce 517 

enhancement of root or shoot growth (Fig. 2, Fig. 3), thus emphasising a complex action on 518 

plant growth mechanisms. The root growth enhancement effect of fluoranthene in Lolium 519 

perenne has been shown to occur in parallel with accumulation of fructose, glucose and the 520 

cell-wall metabolite arabinose (Serra et al., 2015). On the other hand, strong negative effects 521 

on Lotus corniculatus, Anthemis tinctoria and Centaurea cyanus emphasised the potentially 522 

high toxicity of tebuconazole and Zn for natural plant communities. 523 

In spite of the diversity of modes of action, all of the chemical stressors were found to induce, 524 

in at least one plant species, a disconnection of shoot and root growth. Thus, tebuconazole and 525 

fluoranthene significantly decreased shoot growth and increased root growth in Lolium 526 

perenne, and glyphosate significantly decreased shoot growth without affecting root growth in 527 

Lotus corniculatus. Such whole-plant modifications are likely to influence carbon and 528 

nitrogen status of the plant. Metabolomics and transcriptomics analysis of plant-xenobiotic 529 

interactions has revealed a significant impact of xenobiotics on carbon and nitrogen 530 

metabolisms (Armendáriz et al., 2016; Orcaray et al., 2010; Serra et al., 2013, 2015a, 2015b; 531 

Vivancos et al., 2011; Zulet et al., 2013). In Lolium perenne, besides affecting root-shoot 532 

balance (Fig. 2, Fig. 3), fluoranthene treatment induces carbon metabolism modifications and 533 

nitrogen metabolism disturbances in both leaves and roots (Serra et al., 2015), thus suggesting 534 

that xenobiotic-induced enhancement of root growth may not be necessarily adaptive. Further 535 

work will determine whether carbon and nitrogen metabolites could be robust biomarkers of 536 

exposure to subtoxic chemical stress in the field. 537 
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Moreover, given the effects of carbon status on xenobiotic stress responses (Ramel et al., 538 

2007, 2009a, 2009b), modifications of carbon/nitrogen balance may affect exposure to 539 

additional xenobiotics, as occurs during sequential or concomitant contaminations. The 540 

responses to constraints associated with climate change, such as temperature, elevated CO2 541 

and salinity depend on adjustments of the levels of soluble sugars (Bigot et al., 2018). 542 

Simultaneous or sequential exposure to xenobiotic and climate-change-related abiotic stresses 543 

might elicit complex modifications of soluble sugar dynamics. Besides immediate impacts on 544 

the plant, xenobiotic-induced changes of carbon and nitrogen status could therefore have 545 

cascading effects on abiotic stress and climate change responses, and thus more generally on 546 

plant ecosystem functioning under climate change. 547 

4.3. Differential responses of agri-environmental plant species and plant community 548 

dynamics under conditions of agriculture-related chemical contaminations 549 

The comparative analysis of the nine plant species established that the dynamics of plant-550 

contaminant interactions was highly contrasted. The plant cultivars studied in the present 551 

work are commonly used in the design and establishment of VFS and rotational fallows, and 552 

as such, could be considered to be reference cultivars in this context. However, comparative 553 

studies have shown differences of responses to abiotic stresses within cultivars, for instance in 554 

Agrostis stolonifera (Xu et al., 2010) and Festuca rubra (Davies et al., 1995). Beyond 555 

interspecific differences, further work on cultivars or populations of the plant species under 556 

study will be necessary to reveal the determinants of root-shoot responses to agricultural 557 

contaminants. 558 

The three most tolerant species (Festuca rubra, Lolium perenne, Agrostis stolonifera) were 559 

Poaceae that develop deep rooting systems (Roumet et al., 2008) and are used for 560 

phytostabilization and pollutant buffering of VFS and for phytoremediation of polluted soils 561 

(Bidar et al., 2007; Mench et al., 2010; Serra et al., 2016). Festuca rubra and Lolium perenne 562 
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have thus been found to colonize highly-contaminated soils containing Cu, Zn and 563 

fluoranthene (Dazy et al., 2008). Moreover, Festuca rubra, Lolium perenne and Agrostis 564 

stolonifera  are able to adjust carotenoid and chlorophyll levels under conditions of xenobiotic 565 

and heavy metal exposure  (subsection 3.4; Serra et al., 2015a). Given that vegetation 566 

characteristics are important for the efficiency of VFS (Hénault-Ethier et al., 2017) or 567 

rotational fallows (Kuussaari et al., 2011; Toivonen et al., 2013), these plant species are likely 568 

to be useful candidates for designing agri-environmental schemes (Ma and Herzon, 2014) and 569 

sustaining related ecosystem functions (Serra et al., 2016) in agriculturally-intensive 570 

landscapes under a wide range of agricultural pollution conditions. However, the effects of 571 

agricultural contaminants on plant growth and development through indirect effects on plant-572 

plant competition or plant-microbe associations should also be taken into account (Damgaard 573 

et al., 2014; Helander et al., 2018; Van Bruggen et al., 2018). 574 

Fagopyrum esculentum, Lotus corniculatus, Phleum pratense, and Trifolium pratense have 575 

often been used for designing VFS (Krutz et al., 2015; Serra et al., 2016; Stehle et al., 2011). 576 

However, their intermediary sensitivity and tolerance to xenobiotics and heavy metals 577 

indicated that their establishment and growth in agricultural landscapes, especially as part of 578 

pesticide-exposed VFS, were likely to be strongly influenced by pollution and environment 579 

conditions. Shoot growth of Lotus corniculatus was highly sensitive to glyphosate, 580 

hydroxyatrazine, tebuconazole and Zn, although these compounds have very distinct 581 

mechanisms of action on plants (Richard et al., 2011; Rouached, 2013; Serra et al., 2013). 582 

Root growth of Fagopyrum esculentum was significantly affected by glyphosate, which is 583 

intensively applied (Silva et al., 2018, 2019), thus suggesting that the phytostabilization role 584 

of Fagopyrum esculentum in VFS may be limited under conditions of agricultural 585 

pollution.Establishment and growth of Asteraceae Anthemis tinctoria and Centaurea cyanus, 586 

which were the most sensitive plant species, were likely to be impaired under a wide range of 587 
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agricultural pollution conditions. Anthemis tinctoria and Centaurea cyanus, which show a 588 

high degree of plant-insect interactions, are important components of wild flower seed 589 

mixtures (Ditner et al., 2013; Stehlik et al., 2007; Toivonen et al., 2013; Warzecha et al., 590 

2018) for field margin sowing, intersowing or VFS in order to increase pollinator biodiversity 591 

and regulate predator dynamics. Their sensitivity to all or most xenobiotics and heavy metals 592 

may hamper such ecological engineering in agriculturally-intensive landscapes. Conversely, 593 

plant species with greater sensitivity to xenobiotics and heavy metals may be useful 594 

bioindicators of soil pollution in agroecosystems. Impairment of Lotus corniculatus, Anthemis 595 

tinctoria and Centaurea cyanus establishment and growth is thus likely to reflect 596 

contaminating levels of glyphosate and tebuconazole. Given the complex interactions 597 

between the multiple effects of diverse pesticides, bioindication of residual contaminating 598 

levels in soils may be useful to prevent crop injury or weed control failure due to excessive 599 

pesticide treatment of crops grown on pesticide-contaminated soil (Alberto et al., 2016). 600 

Moreover, the general sensitivity of Anthemis tinctoria and Centaurea cyanus to xenobiotics 601 

and heavy metals entails that their cultivation as specialty crops should be carried out in a 602 

clean environment requiring at least a restricted use of pesticide treatments. 603 

604 
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Legends of Figures 912 

Figure 1. Effects of root-level exposure to glyphosate on primary root growth of Arabidopsis 913 

thaliana plantlets. 914 

Figure 2. Effects of root-level exposure to agricultural xenobiotics and heavy metals on main 915 

root growth of agri-environmental plant species. Responses of each plant species to the range 916 

of xenobiotics and heavy metals are expressed in values (mean  ± SEM) of percentage of 917 

inhibition [(Growthcontrol – Growthtreatment)/Growthcontrol]. Negative values therefore reflect 918 

growth increase under treatment conditions. Statistical significance of differences (P ≦ 0.05) 919 

between treatment and control is shown by asterisks above bars. The statistical significance of 920 

plant-plant differences of responses to a given xenobiotic or heavy metal treatment is given in 921 

supplementary data 1. The Figure in colour is available online. 922 

Figure 3. Effects of root-level exposure to agricultural xenobiotics and heavy metals on shoot 923 

growth of agri-environmental plant species. Responses of each plant species to the range of 924 

xenobiotics and heavy metals are expressed in values (mean  ± SEM) of percentage of 925 

inhibition [(Growthcontrol – Growthtreatment)/Growthcontrol]. Negative values therefore reflect 926 

growth increase under treatment conditions. Statistical significance of differences (P ≦ 0.05) 927 

between treatment and control is shown by asterisks above bars. The statistical significance of 928 

plant-plant differences of responses to a given xenobiotic or heavy metal treatment is given in 929 

supplementary data 1. The Figure in colour is available online. 930 

Figure 4. Principal component analysis and hierarchical clustering of species-specific plant 931 

responses to agricultural xenobiotics and heavy metals. PCA was carried out on the 932 

correlation matrix of growth response parameters (F: foliar growth; R: root growth) under the 933 

various conditions of treatment. Growth responses to agricultural xenobiotics and heavy 934 

metals were analysed in terms of percentage of inhibition (Fig. 2, Fig. 3). Plant species under 935 

study are described by their generic name. (A) Distribution of plant species, (B) Hierarchical 936 
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classification of plant species, (C) Position of the different growth response parameters in the 937 

presence of xenobiotics and heavy metals on the first plane (Dim1 and Dim2). The Figure in 938 

colour is available online. 939 
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Table 1. Median effective concentrations (EC50) of the impact of agricultural xenobiotics 1 

and heavy metals on primary root growth in Arabidopsis thaliana seedlings. Concentrations 2 

used in subsequent experiments are given. 3 

 4 

Agricultural contaminant EC50 (µM) Experimental  Experimental 5 

                                                       Concentration (µM) Concentration (mg L-1) 6 

 7 

 8 

Glyphosate   0.75  1   0.169 9 

 10 

AMPA    30  50   5.550 11 

 12 

Atrazine   0.5  0.5   0.1 13 

 14 

Hydroxyatrazine  25  25   5 15 

 16 

Tebuconazole   4  4   1.28  17 

 18 

Zn    15  15    0.98 19 

 20 

Cu    6  6   0.38  21 

 22 

Fluoranthene   532  532   107.5  23 

 24 

 25 

 26 

27 
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Table 2. Differential tolerance and sensitivity of agri-environmental plant species towards 28 

agricultural xenobiotics and heavy metals. Agri-environmental plant species are ranked 29 

according to the numbers of tolerance (first number) and enhancement (second number) 30 

interactions relatively to the 8 xenobiotic (glyphosate, AMPA, atrazine, hydroxyatrazine, 31 

tebuconazole, fluoranthene) and heavy metal (Cu, Zn) treatments described in Fig. 2 and Fig. 32 

3. 33 

 34 

Plant species   Root growth    Shoot growth 35 

    Tolerance + enhancement  Tolerance + enhancement 36 

 37 

 38 

Festuca rubra    (8+0)/8    (6+1)/8 39 

  40 

Lolium perenne   (6+2)/8    (6+0)/8  41 

 42 

Agrostis stolonifera   (5+1)/8    (6+0)/8   43 

 44 

Trifolium pratense   (5+0)/8    (6+1)/8  45 

 46 

Fagopyrum esculentum (5+0)/8    (7+0)/8 47 

 48 

Phleum pratense  (5+0)/8    (6+0)/8  49 

 50 

Lotus corniculatus  (4+1)/8    (2+0)/8 51 

 52 

Centaurea cyanus  (2+0)/8    (4+0)/8 53 

 54 

Anthemis tinctoria  (0+0)/8    (6+0)/8 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 
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