D. Archer and N. Galloway, Champagne-cork injury to the eye, Lancet, vol.290, pp.487-489, 1967.

G. M. Cavallini, N. Lugli, L. Campi, L. Pagliani, and P. Saccarola, Bottle-cork injury to the eye: A review of 13 cases, Eur. J. Ophtalmol, vol.13, pp.287-291, 2003.

F. Kuhn, V. Mester, R. Morris, and J. Dalma, Serious eye injuries caused by bottles containing carbonated drinks, Br. J. Ophtalmol, vol.88, pp.69-71, 2004.

D. Sharp, Safe bubbly, Lancet, vol.364, p.2165, 2004.

G. Liger-belair, Uncorked: The Science Of Champagne, 2013.

G. Liger-belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise, Eur. Phys. J. Special Topics, vol.226, pp.3-116, 2017.

R. Batt, Pop! goes the champagne bottle cork, J. Chem. Educ, vol.48, p.75, 1971.

M. Vollmer and K. Möllmann, Vapour pressure and adiabatic cooling from champagne: Slow-motion visualization of gas thermodynamics, Phys. Educ, vol.47, pp.608-615, 2012.

. Liger-belair, Sci. Adv, vol.5, p.5528, 2019.

G. Liger-belair, M. Bourget, C. Cilindre, H. Pron, and G. Polidori, Champagne cork popping revisited through high-speed infrared imaging: The role of temperature, J. Food Eng, vol.116, pp.78-85, 2013.

A. Sanchez-lavega, An Introduction to Planetary Atmospheres, 2011.

G. Liger-belair, D. Cordier, J. Honvault, and C. Cilindre, Unveiling CO 2 heterogeneous freezing plumes during champagne cork popping, Sci. Rep, vol.7, p.10938, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02270816

J. G. Speight, Lange's Handbook of Chemistry, 2017.

F. F. Abraham, Homogeneous Nucleation Theory, 1974.

R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu, Nucleation and growth of nanoparticles in the atmosphere, Chem. Rev, vol.112, 1957.

S. Yuko, Statistical Physics of Crystal Growth, 1996.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2014.

S. G. Warren, Optical constants of carbon dioxide ice, Appl. Opt, vol.25, pp.2650-2674, 1986.

S. G. Warren and R. E. Brandt, Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res, vol.113, p.144220, 2008.

D. Rusch, G. Thomas, A. Merkel, J. Olivero, A. Chandran et al., Large ice particles associated with small ice water content observed by AIM CIPS imagery of polar mesospheric clouds: Evidence for microphysical coupling with small-scale dynamics, J. Atmos. Sol. Terr. Phys, vol.162, pp.97-105, 2017.

B. E. Wyslouzil, C. H. Heath, J. L. Cheung, and G. Wilemski, Binary condensation in a supersonic nozzle, J. Chem. Phys, vol.113, pp.7317-7329, 2000.

A. Moudens, R. Georges, M. Goubet, M. J. Makarewicz, S. E. Lokshtanov et al., Direct absorption spectroscopy of water clusters formed in a continuous slit nozzle expansion, J. Chem. Phys, vol.131, p.204312, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00662775

Z. Li, J. Zhong, and D. A. Levin, Modeling of CO 2 homogeneous and heterogeneous condensation plumes, J. Phys. Chem. C, vol.114, pp.5276-5286, 2010.

O. F. Hagena and W. Obert, Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas, J. Chem. Phys, vol.56, pp.1793-1802, 1972.

A. Ramos, J. M. Fernández, G. Tejeda, and S. Montero, Quantitative study of cluster growth in free-jet expansions of CO 2 by Rayleigh and Raman scattering, Phys. Rev. A, vol.72, p.53204, 2005.

J. Zhong, M. I. Zeifman, and D. A. Levin, Kinetic model of condensation in a free argon expanding jet, J. Thermophys. Heat Transfer, vol.20, pp.41-51, 2006.

M. Norman and K. Winkler, Supersonic jets, Los Alamos Sci, vol.12, pp.38-71, 1985.

M. A. Saad, Compressible Fluid Flow, 1993.

C. D. Donaldson and R. S. Snedeker, A Study of free jet impingement. Part 1. Mean properties of free and impinging jets, J. Fluid Mech, vol.45, pp.281-319, 1971.

T. Irie, T. Yasunobu, H. Kashimura, and T. Setoguchi, Characteristics of the mach disk in the underexpanded jet in which the back pressure continuously changes with time, J. Therm. Sci, vol.12, pp.132-137, 2003.

A. Risborg and J. Soria, High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate, 28th International Congress on High-Speed Imaging and Photonics, vol.7126, p.71261, 2009.

M. M. Orescanin and J. M. Austin, Exhaust of underexpanded jets from finite reservoirs, J. Propul. Power, vol.26, pp.744-753, 2010.

M. M. Orescanin, D. Prisco, J. M. Austin, and S. W. Kieffer, Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts, J. Geophys. Res. Sol. Earth, vol.119, pp.2976-2987, 2014.

E. Mach, Uber den Verlauf von Funkenwellen in der Ebene und im Raume, Sitzungsbr. Akad. Wien, vol.78, pp.819-838, 1878.

B. André, T. Castelain, and C. Bailly, Experimental exploration of underexpanded supersonic jets, Schock Waves, vol.24, pp.21-32, 2014.

E. Franquet, V. Perrier, S. Gibout, and P. Bruel, Free underexpanded jets in a quiescent medium: A review, Prog. Aerosp. Sci, vol.77, pp.25-53, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247078

V. Zapryagaev, N. Kiselev, and D. Gubanov, Shock-wave structure of supersonic jet flows, Aerospace, vol.5, p.60, 2018.

S. Crist, P. M. Sherman, and D. R. Glass, Study of the highly underexpanded sonic jet, AIAA J, vol.4, pp.68-71, 1966.

J. C. Carling and B. L. Hunt, The Near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet, J. Fluid Mech, vol.66, pp.159-176, 1974.

P. J. Lamont and B. L. Hunt, The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates, J. Fluid Mech, vol.100, pp.471-511, 1980.

J. Lengrand, J. Allègre, and M. Raffin, Underexpanded free jets and their interaction with adjacent surfaces, AIAA J, vol.20, pp.27-28, 1982.

I. Khalil and D. R. Miller, The structure of supercritical fluid free-jet expansions, AIChE J, vol.50, pp.2697-2704, 2004.

S. W. Kieffer and B. Sturtevant, Laboratory studies of volcanic jets, J. Geophys. Res, vol.89, pp.8253-8268, 1984.

, Even a soda bottle rocket can do one of a fighter jet's coolest tricks, Popular Mechanics, 2017.

G. Liger-belair, The physics and chemistry behind the bubbling properties of champagne and sparkling wines: A state-of-the-art review, J. Agric. Food Chem, vol.53, pp.2788-2802, 2005.

O. C. Bridgeman and E. W. Aldrich, Vapor pressure tables for water, J. Heat Transfer, vol.86, pp.279-286, 1964.

J. Marti and K. A. Mauersberger, A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K, Geophys. Res. Lett, vol.20, pp.363-366, 1993.

W. F. Giauque and C. J. Egan, Carbon dioxide. The heat capacity and vapor pressure of the solid. The heat of sublimation. Thermodynamic and spectroscopic values of the entropy, J. Chem. Phys, vol.5, pp.45-54, 1937.

A. Määttänen, H. Vehkamäki, A. Lauri, S. Merikallio, J. Kauhanen et al., Nucleation studies in the Martian atmosphere, J. Geophys. Res, vol.110, p.2002, 2005.

G. L. , -. , D. C. , and R. G. , We are also indebted to the Association Recherche OEnologique Champagne et Université (AROCU) for moral support, Acknowledgments: We acknowledge T. Gasco, chef de cave from Champagne Pommery

G. Liger-belair, D. Cordier, and R. Georges, Under-expanded supersonic CO 2 freezing jets during champagne cork popping, Sci. Adv, vol.5, p.5528, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02309941

G. Liger, -. Belair, D. Cordier, R. Georges, and D. , , p.5528


, This article cites 39 articles, 1 of which you can access for free