D. Souza, S. Visco, S. J. De-jonghe, and L. C. , Thin-Film Solid Oxide Fuel Cell with High Performance at Low Temperature. Solid State Ion, vol.98, pp.57-63, 1997.

F. Ricoul, A. Subrenat, O. Joubert, and A. Le-gal-la-salle, Electricity Production from Lignocellulosic Biomass by Direct Coupling of a Gasifier and a Nickel/Yttria-Stabilized Zirconia-Based Solid Oxide Fuel Cell. Part 1: From Gas Production to Direct Electricity Production, Int. J. Hydrog. Energy, vol.42, pp.21215-21225, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01623095

J. Malzbender, E. Wessel, and R. W. Steinbrech, Reduction and Re-Oxidation of Anodes for Solid Oxide Fuel Cells. Solid State Ion, vol.176, pp.2201-2203, 2005.

P. G. Bruce, B. Scrosati, and J. Tarascon, Nanomaterials for Rechargeable Lithium Batteries, Angew. Chem. Int. Ed, vol.47, pp.2930-2946, 2008.

S. A. Needham, G. X. Wang, and H. K. Liu, Synthesis of NiO Nanotubes for Use as Negative Electrodes in Lithium Ion Batteries, J. Power Sources, vol.159, pp.254-257, 2006.

H. Hao-liu, G. Wang, J. Liu, S. Qiao, and H. Ahn, Highly Ordered Mesoporous NiO Anode Material for Lithium Ion Batteries with an Excellent Electrochemical Performance, J. Mater. Chem, vol.21, pp.3046-3052, 2011.

J. Zhang, J. P. Tu, X. H. Xia, Y. Qiao, and Y. Lu, An All-Solid-State Electrochromic Device Based on NiO/WO 3 Complementary Structure and Solid Hybrid Polyelectrolyte, Sol. Energy Mater. Sol. Cells, vol.93, pp.1840-1845, 2009.

H. Moulki, D. H. Park, B. Min, H. Kwon, S. Hwang et al., Improved Electrochromic Performances of NiO based Thin Films by Lithium Addition: From Single Layers to Devices, Electrochim. Acta, vol.74, pp.46-52, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701596

. Granqvist,

C. G. , Electrochromic Devices, J. Eur. Ceram. Soc, vol.25, pp.2907-2912, 2005.

J. A. Dirksen, K. Duval, and T. A. Ring, NiO Thin-Film Formaldehyde Gas Sensor, Sens. Actuator B-Chem, vol.80, pp.106-115, 2001.

I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, Sensing Characteristics of NiO Thin Films as NO 2 Gas Sensor, Thin Solid Films, vol.418, pp.9-15, 2002.

H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, H 2 gas sensor performance of NiO at high temperatures in gas mixtures, Sens. Actuators B-Chem, vol.151, pp.162-168, 2010.

M. A. Gondal, M. N. Sayeed, and A. Alarfaj, Activity Comparison of Fe 2 O 3 , NiO, WO 3 , TiO 2 Semiconductor Catalysts in Phenol Degradation by Laser Enhanced Photo-Catalytic Process, Chem. Phys Lett, vol.445, pp.325-330, 2007.

L. Li, L. Duan, F. Wen, . Li, M. Wang et al., Visible light Driven Hydrogen Production from a Photo-Active Cathode Based on a Molecular Catalyst and Organic Dye-Sensitized p-type Nanostructured NiO, Chem. Commun, vol.48, pp.988-990, 2012.

D. Wang, R. Xu, X. Wang, and Y. Li, NiO Nanorings and their Unexpected Catalytic Property for CO Oxidation, vol.17, pp.979-983, 2006.

J. He, H. Lindström, A. Hagfeldt, and S. Lindquist, Dye-Sensitized Nanostructured p-type Nickel Oxide Film as a Photocathode for a Solar Cell, J. Phys. Chem. B, vol.103, pp.8940-8943, 1999.

F. Odobel, L. Le-pleux, Y. Pellegrin, and E. Blart, New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities, Accounts Chem. Res, vol.43, pp.1063-1071, 2010.

I. R. Perera, T. Daeneke, S. Makuta, Z. Yu, Y. Tachibana et al., Application of the Tris(acetylacetonato)Iron(III)/(II) Redox Couple in p-Type Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed, vol.54, pp.3758-3762, 2015.

U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices, IEEE Trans. Electron Devices, vol.56, pp.186-192, 2009.

D. C. Kim, S. Seo, S. E. Ahn, D. Suh, M. J. Lee et al.,

J. T. Moon and B. I. Ryu, Electrical Observations of Filamentary Conductions for the Resistive Memory Switching in NiO films, Appl. Phys. Lett, p.202102, 2006.

M. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang et al., Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory, Nano Lett, vol.9, pp.1476-1481, 2009.

R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, Finite Size Effects in Antiferromagnetic NiO Nanoparticles, Phys. Rev. B, vol.79, pp.1393-1396, 1997.

Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima et al., Magnetic Properties of NiO Nanoparticles, Physica B, pp.862-863, 2003.

J. F. Cooper, A. Ionescu, R. M. Langford, K. R. Ziebeck, C. H. Barnes et al., Core/Shell Magnetism in NiO Nanoparticles, J. Appl. Phys, vol.114, p.83906, 2013.

N. F. Mott, The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals, Proc. Phys. Soc. A, vol.62, pp.416-422, 1949.

O. Tjernberg, S. Söderholm, U. O. Karlsson, G. Chiaia, M. Qvarford et al., Lindau, I. Resonant Photoelectron Spectroscopy on NiO, Phys. Rev. B, p.10372, 1996.

T. M. Schuler, D. L. Ederer, S. Itza-ortiz, G. T. Woods, T. A. Callcott et al., Character of the Insulating State in NiO: A Mixture of Charge-Transfer and Mott-Hubbard Character, J. Phys. Chem, vol.71, issue.28, pp.3080-3086, 1992.

G. Boschloo and A. Hagfeldt, Spectroelectrochemistry of Nanostructured NiO, J. Phys. Chem. B, vol.105, pp.3039-3044, 2001.

R. C. Koro?ec and P. Bukovec, Sol-Gel Prepared NiO Thin Films for Electrochromic Applications, Acta Chim. Slov, vol.53, pp.136-147, 2006.

V. Biju and M. Abdul-khadar, DC Conductivity of Consolidated Nanoparticles of NiO, Mater. Res. Bull, vol.36, p.21, 2001.

G. Madhu and V. Biju, Effect of Ni 2+ and O 2-Vacancies on the Electrical and Optical Properties of Nanostructured Nickel Oxide Synthesized Through a facile Chemical Route, Physica E, vol.60, 0200.

B. Polteau, F. Tessier, F. Cheviré, L. Cario, F. Odobel et al., Synthesis of Ni-poor NiO Nanoparticles for p-DSSC Applications, Solid State Sci, vol.54, pp.37-42, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326324

A. Renaud, L. Cario, X. Rocquelfelte, P. Deniard, E. Gautron et al., Unravelling the Origin of the Giant Zn Deficiency in Wurtzite Type ZnO Nanoparticles, Sci. Rep, vol.5, p.12914, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211369

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré et al., Jobic, S. p-type Nitrogen Doped ZnO Nanoparticles Stable Over Two Years in Ambient Conditions, J. Am. Chem. Soc, vol.134, pp.464-470, 2012.

S. Mandal, S. Banerjee, and K. S. Menon, Core-shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle, Phys. Rev. B, p.214420, 2009.

S. Mandal, K. S. Menon, S. K. Mahatha, and S. Banerjee, Finite size versus surface effects on magnetic properties of antiferromagnetic particles, Appl. Phys. Lett, p.232507, 2011.

J. F. Cooper, A. Ionescu, R. M. Langford, K. R. Ziebeck, C. H. Barnes et al., Core/shell magnetism in NiO nanoparticles, J. Appl. Phys, vol.114, p.83906, 2013.

Z. Chen, Y. Chen, Q. K. Zhang, X. Q. Tang, D. D. Wang et al., Vacancy-Induced Ferromagnetic Behavior in Antiferromagnetic NiO Nanoparticles: A Positron Annihilation Study, ECS J. Solid State Sci. Technol, vol.6, pp.798-804, 2017.