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ABSTRACT A novel network-based method to realistically simulate the guidewire position in the vascular
system is presented in this paper.We can always obtain an ideal guidewire path by the shortest path algorithm,
particularly, critical path algorithm based on the principle of maximum path length. Besides, we propose an
adaptive sampling algorithm and optimizations based on two ends of the guidewire to adjust the guidewire
position toward achieving an ideal simulation result. Compared with previous results, we can achieve 29%,
20% and 47% improvements in accuracy for three phantoms under the same conditions.

INDEX TERMS
Endovascular interventions, guidewire simulation, real time, activity on edge network, critical path.

I. INTRODUCTION
Cardiovascular disease ranks first among all causes of death,
resulting in more than 15 million deaths each year in the
world. Over the past few decades, minimally invasive vascu-
lar intervention surgery has taken place rapid development
with the advantages of faster recovery, smaller incisions,
less blood loss, a shorter hospital stay and decreased pain.
In this surgery, a flexible guidewire is first placed in the
remote punctured artery site and navigated to the diseased
site under fluoroscopic guidance. Physicians then gently
move the devices, such as catheter, stents, balloons or coils,
to the interventional site along the inserted guidewire, i.e., the
guidewire is considered as a guide track for these devices.

The associate editor coordinating the review of this article and approving
it for publication was Carmelo Militello.

This operation is complicated due to the guidewire’s shape
and position arbitrary change inside the vessel lumen. In addi-
tion, excessive force can lead to complications, such as
hemorrhage, vessel spasm, or vessel plaque release [17].
Complications may occur especially in symptomatic and
older patients, which often have weakened vessel structures
with reduced flexibility and high calcification rates [19].
Hence, only interventional radiologists can perform the oper-
ation on real patients. It is valuable to predict the guidewire
position in advance to optimize the image-guided procedure.

Some methods have been proposed to realistically sim-
ulate the behavior of a guidewire. To model bending,
twists and other deformations, several groups have incor-
porated the connected beam elements into the finite ele-
ment method (FEM), e.g. linear elastic [9], [10], [14] and
static [6], [20] finite element representations. In addition,
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some of the above methods have been used in the medi-
cal simulators, see, e.g., [2], [4], [6], [15]. Cotin et al. [5]
presented a linear model based on the finite beam elements
and substructure decomposition, their method allows nonlin-
ear simulation. Konings et al. [1], [11], [12] presented the
guidewire path as an energy function and minimized it in
an iterative fashion. To avoid the high computational cost,
Schafer et al. [18], [19], [21] expressed this problem as a
shortest path algorithm of graph according to the analytical
modeling ideas [3], [11] and beam-like FEM methods.

Based on the method of [18], [19], [21], Qiu et al. [16]
provided an iterative refinement method to further reduce the
computational cost. Based on the method of [18], [19], [21],
Qiu et al. [16] provided an iterative refinement method to
further reduce the computational cost. However, all the above
methods cannot avoid the high computational cost and the
failure to obtain an ideal simulation result within an accept-
able time frame.

In this paper, we provide a new network-based method
to simulate the behavior of a guidewire in the vascular
system. The method adopts an adaptive sampling algorithm,
an improved activity on edge (AOE) network method as
well as an end-based optimization approach, improving both
efficiency and accuracy in simulations.

The organization of the paper is as follows: the proposed
method is presented in Section II. The experiment results
and compares the proposed model with an existing model are
presented in Section III. The experiment results are discussed
in Section IV. Finally, the conclusion and indicates directions
of future work are given in Section V.

II. PROPOSED METHOD
In this section, we propose a network-based method to sim-
ulate the guidewire path in the vascular system, our method
involves the followingmain tasks.We first present an iterative
refinement method based on the adaptive sampling algorithm
to achieve some maximum curvature points, and use them to
construct the AOE network. To assign a value to each directed
edge on AOE network, an energy function is then defined.
To calculate the critical path, we then discuss how to construct
AOE network. Finally, we describe the optimization approach
based on the front or back end of the simulated guidewire so
as to optimize the simulation path.

A. ITERATIVE REFINEMENT ALGORITHM
In [16], Qiu et al. proposed an iterative refinement method but
it cannot accurately identify some ordered centerline points
with maximum curvature. To improve the accuracy of the
point identification, the approach is improved by canceling
the parameter α (number of maximum curvature’s points)
given in [16] and by adopting an adaptive sampling algorithm
in this subsection.The centerline points (as the data input) are
represented by an ordered set L = {L0, . . .L|L|−1}, where
|L| denotes the size of set L. During the iterative refine-
ment, we first identify a maximum curvature point between
centerline points L1 and L|L|−2, and express it as Lm by

using (1) [21].

CLm = cos−1
(
−−−→
Li−5Li ·

−−−→
LiLi+5

)
(1)

We then identify the maximum curvature points between L1
and Lm, and between Lm and L|L|−2, and so on. When the
distance of centerline indexes of any two adjacent centerline
points identified is less than a predefined constant δ (iterative
refinement termination condition), we stop identifying the
maximum curvature points. The indexes of themaximum cur-
vature points generated during the iteration process constitute
an ordered set C. We select the indexes of some maximum
curvature points from set C according to the adaptive sam-
pling algorithm (merge small edges) [13], and put them into
ordered set B. Then, we identify several maximum curvature
points according to a given threshold δ′ (δ′ > δ) and the
adaptive sampling algorithm (split big edges) [13]. Finally,
the centerline indexes of these points are put into the ordered
set B.
The above steps can be described as follows:
Step 1: Put centerline indexes of L1 and L|L|−2 into set C,

put centerline index of L1 into set B;
Step 2: For any two points with consecutive indexes in

the sorted set C (e.g., LC[k] and LC[k+1]), we then generate
the maximum curvature point (denoted by Lm) between LC[k]
and LC[k+1] using (1) if the distance between them is more
than δ (e.g., 3). The index m of this point is put into set C.
Then, the set C is sorted in the increasing order of those index
values. Step 2 is repeated until the distance between any two
points with indexes in set C is less than δ;
Step 3: Filter an index of the maximum curvature point

(denoted by Lh) from set C in the index range of [g + 5,
g + 20] if g + 5 < C[k] < g + 20, where g = 1, k =
0,1,2. . . |C| − 1. Otherwise, calculate a maximum curvature
point (denoted by Lh) between Lg+5 and Lg+20 by CLh =

cos−1
(
−−−→
Li−5Li ·

−−−→
LiLi+5

)
. Then, the index h of this point is put

into set B. Finally, g= h. Repeat Step 3 until g+ 5> |L|−2;
Step 4: Put centerline index of L|L|−2 into ordered set B;
Step 5: If the distance of B[k] and B[k+1] is more than a

given threshold δ′(δ′ > δ), get an index of another max-
imum curvature point between B[k] and B[k+1] by CLi =
cos−1

(
−−−→
Li−5Li ·

−−−→
LiLi+5

)
, where B[k] + 8 ≤ i ≤ B[k+1]−8,

k = 0. . . |B| − 2. Then, The index of this point is put into set
B. Step 5 is repeated until the distance between any two points
with indexes in B is less than δ′;
Step 6: Sort set B (e.g., using the quick sort algorithm);
Step 7: Get |B| ordered centerline points.

1) ILLUSTRATIVE EXAMPLE
Consider L = {L0, . . . , L35} with δ = 3 and δ′ = 8.
Step 1: Put 1 and 34 into set C, put 1 in to set B;
Step 2: Generate the maximum curvature point denoted by

L25 between L1 and L34. Then the maximum curvature points
between L1 and L25, and between L25 and L34 are identified
respectively, and so on. Put centerline indexes of these points
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into set C and sort it to obtain C= {1, 4, 7, 10, 13, 15, 18, 20,
23, 25, 27, 28, 30, 31, 34};
Step 3: Filter an index 13 of the maximum curvature point

L13 from set C in the index range of [1+5, 1+20], and put
13 into set B. Filter an index 25 of the maximum curvature
point L25 in the index range of [13+5, 13+20], and put 25 into
set B. Filter an index 31 of the maximum curvature point L31
in the index range of [25+5, 34], and put 31 into set B and
obtain B = {1, 13, 25, 31};
Step 4: put 34 into set B and obtain B= {1, 13, 25, 31, 34};
Step 5: Since the distance between them is more than δ′,

generate maximum curvature points denoted by L7 between
L1 and L13, then generate maximum curvature points denoted
by L20 between L13 and L25. Finally, put 7 and 20 into set B
and sort it to obtain B = {1, 7, 13, 20, 25, 31, 34}.
Upon completion of the iterative method, the ordered set

B is obtained. Then, |B| meshes centered at each center-
line point LB[k] are constructed by using the same method
as [16]. Each mesh MLB[k] contains 4 circles and m sam-
pled points (5–45 sampled points). Each sampled point is
defined as mi,LB[k], where i and LB[k] refer to index of
the sampled point on each mesh and index of each mesh,
respectively.

Next, this spatial representation is represented as a net-
work, i.e., |B| meshes and two endpoints of guidewire are
denoted by an AOE network with |B|+2 layers. In this AOE
network, the centerline points L0 and L|L|−1 are considered as
the source point and meeting point, respectively. Each mesh
MLB[k] is represented as a layer. Each sampled pointmi,LB[k]
is considered as a node representing an event. Meanwhile,
the directed edge connecting two sampled points is repre-
sented as an activity, its value is defined as the execution
time of this activity. For each activity, its execution time,
i.e., the value of the edge, is given by an energy function U
that is defined in Section II.B. In addition, L0 is connected
to the first layer containing all sampled points of the first
mesh and last layer containing all sampled points of the
last mesh is connected to L|B|−1 respectively with 1 energy
edges.

B. ENERGY FUNCTION
To better approximate the energy function for the guidewire,
two types of energy are considered as shown in (2).

U = Ue + Up (2)

Ue in (2) is the elastic energy derived from the bending
energy. It is first proposed by Bernoulli in 1738. Euler [7]
studied intensively it for the case of planar curves. In our
model, we accept the following definition of the bending
energy reported in [16]. For any two consecutive sam-
pled points mi,LB[k] and mr ,LB[k-1], if cos(θ1) = cos(
−−−−−−−−−−−−−−−→
m0,LB[k]−m0,LB[k−1]·

−−−−−−−−−−−−−−→
mi,LB[k]−mr ,LB[k-1]

)
and sin(θ2)=

sin
(
−−−−−−−−−−−−−−−−→
m0,LB[k-1]−mr ,LB[k−1]·

−−−−−−−−−−−−−−−→
mi,LB[k]−mr ,LB[k−1]

)
, then

FIGURE 1. AOE network constructed by the energy function.

the elastic energy Ue is formulated as follow

Ue =
1
2
(cos(θ1)2 + sin(θ2)2) (3)

Up in (2) is the potential energy due to the distance from
the sampled points mr ,LB[k-1] and m0,LB[k-1]. Therefore,
we calculate it using Hooker’s law [22] and define it as follow

Up =
1
2
(R− κ · ||mr ,LB[k-1] − m0,LB[k-1]||), (4)

where ||mr ,LB[k-1] − m0,LB[k-1]||, κ and R refer to the dis-
tance between mr ,LB[k-1] and m0,LB[k-1], the curvature [8]
at the sampled point mr ,LB[k-1] and the vessel radius,
respectively.

C. AOE NETWORK CONSTRUCTION
The AOE network is constructed as shown in Figure 1
once the energy value of each directed edge is defined
using (2). The critical path with maximum path length on this
network, i.e., shortest time to complete this project, is calcu-
lated using the following step-by-step process:
Step 1: The centerline points L0 and L|L|−1 are considered

as source point and meeting point, respectively;
Step 2: Scramble serial number of the sampled points on

each mesh MLB[k];
Step 3: Calculate energy value of each directed edge

according to the energy function (2);
Step 4: Start from the source point, calculate the earliest

completion time of each node according to energy values of
all in-degree edges of each node from source point to meeting
point;
Step 5: The earliest completion time of meeting point

L|L|−1 is considered as shortest time to complete this project,
i.e., maximum path length. Meanwhile, the meeting point
L|L|−1 is considered as the first critical node;
Step 6: Start from the meeting point L|L|−1, calculate the

latest completion time of each node according to energy val-
ues of all out-degree edges of each node from meeting point
to source point. Meanwhile, the source point L0 is considered
as the last critical node;
Step 7: Calculate the critical node according to the earliest

completion time and the latest completion time of each node.
Then, record all critical nodes;
Step 8: Get |B|+2 critical nodes on the critical path.
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TABLE 1. A group of simulation results for phantoms 1, 2 and 3.

FIGURE 2. RMS vs. iterative termination conditions δ.

D. OPTIMIZATION BASED ON TWO ENDS OF THE
GUIDEWIRE
Upon completion of critical path on AOE network calcula-
tion, |B| +2 critical nodes are obtained. The interventional
operation is likely to be affected by the implantation location
and angle of guidewire. Therefore, we perform optimization
based on two ends of the guidewire to reduce effects of this
factor on the operation. We take the front-end optimization
as an example since it is same as back-end optimization. The
optimization steps can be described as the following step-by-
step process:
Step 1: Compute a maximum curvature point Lk using (1),

where B[0]+1 =< k <= B[1] − 1;
Step 2: Compute another maximum curvature point Lm

using (1), where k+1 =< m <= B[1]−1 or B[0] +1 =<
m <= k − 1;
Step 3: Compute the linear equation Line using (5):

x − x1
x2 − x1

=
y− y1
y2 − y2

=
z− z1
z2 − z1

, (5)

where (x1, y1, z1) and (x2, y2, z2) refer to coordinates of the
start point mi,LB[0] and key node LB[1], respectively;
Step 4: Construct a mesh containing 16 circles by Lk , and

construct a mesh containing 16 circles by Lm. Then, screen
out an insertion point with the minimum vertical distance to
the linear equation Line from the two meshes, respectively.
Finally, this two insertion points are considered as critical
nodes on critical path.

Finally, we calculate the simulation guidewire via cubic
spline interpolation according to |B|+2 critical nodes and
4 insertion points generated from optimization based on two
ends of the guidewire.

FIGURE 3. RMS vs. number of sampled points in each mesh.

FIGURE 4. RMS vs. vessel radius for phantom 3.

III. RESULTS
The proposed method is evaluated by comparing simulation
resultGswith reference guidewireGr . For each point i inGr ,
the closest point j in Gs is determined (6).

drs(i) = min (Gr (i)− Gs(j)) (6)

As an error measure, the root-mean-square (RMS) distance
between Gs and Gr is determined. For a guidewire with N
centerline points, the error measure is defined as follows:

RMSrs =

√√√√ 1
N

N∑
i

(drs(i))2 (7)

A. PERFORMANCE COMPARISION
Table 1 shows our simulation results. Parameter δ (iter-
ative refinement termination condition) is equal to 5 and
20 in the proposed model and model of [16], respectively.
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FIGURE 5. RMS vs. 256 simulations for possible combinations of start and end points in phantom 3.

Besides, eachmesh contains 43 sampled points, the start point
L1 and end point L|L|−2 are kept fixed. The length of the
reference guidewire and vessel radius are also given in the last
two columns of Table 1. Compared to [16] (using parameter
α = 10, representing the number of maximum curvature’s
points), we can achieve 29%, 20% and 47% improvements for
phantoms 1, 2 and 3, respectively. In addition, our method can
achieve better improvements in accuracy for three phantoms
when parameter δ is more than 20, e.g., we can achieve 68%,
50% and 57% improvements for the three phantoms under the
same conditions when δ is equal to 27.

B. EFFECTS OF PARAMETER δ

For this experiment, we keep the same parameters as those
for generating results in Table 1 and only change value of
parameter δ in the range of [3], [32]. Figure 2 shows that the
RMS value using the proposed model is a constant 0.4319,
while the RMS under the model of [16] are very unstable and
vary from 0.3842 to 1.4128.

C. EFFECTS OF THE NUMBER OF SAMPLED POINTS
We keep the same parameters as those for generating results
in Table 1 and only change the number of sampled points.
Figure 3 shows that the RMS value under the proposed model
is a constant 0.4399, while the RMS under the model of [16]
are unstable and vary from 0.4946 to 1.0726.

D. EFFECTS OF THE VESSEL RADIUS
In this experiment, the same parameters as those for generat-
ing results in Table 1 are maintained and only change the size
of the vessel radius. Then, we always calculate the critical
path between sampled point m42,1 ∈ M1 and sampled point
m42,|B| ∈ M|B|. Figure 4 shows that the RMS values under the
proposed model are almost all lower than 0.5 mm and almost
unchanged, while the RMS under the model of [16] are larger
and vary from 0.5486 to 1.9047.

E. EFFECTS OF START AND END POINTS
In this experiment, the same parameters as those for gen-
erating results in Table 1 and only change the start point

m0,1 ∈ M1) and end point m0,|B| ∈ M|B|), respectively.
The 16 sampled points obtained from the meshes M1 and
M|B| respectively are considered as the start points and end
points, respectively. Figure 5 shows that the RMS values
under the proposed model are all lower than 0.5 mm and
almost constant, while the RMS under the model of [16] are
very unstable and vary from 0.5846 to 1.3949.

To further test whether the proposed model is affected
by the selection of parameter of iterative refinement
approach. Here, parameter α is equal to 8 under the model
of [16]. Figure 6 shows the comparison results using a dif-
ferent value of parameter δ (= 26). The RMS values under
the proposed model are all lower than 0.5 mm and almost
unchanged, while the RMS values obtained using the model
of [16] are almost all bigger than 1 mm.

F. RUNNING TIME
In this experiment, 50 running times are collected on quad-
core computer with 4G memory. Compare to the model
of [16], Table 2 shows the proposed model has a shorter
running time.

IV. DISCUSSION
Based on our simulation study in Section III.B, the statis-
tical data collected using different values of δ show our
RMS difference obtained using the proposed model is equal
to 0 mm, whereas it is ≤ 1.0286 mm under the model
of [16] for phantom 1. Similar simulations can be obtained
for phantoms 2 and 3. Therefore, the simulation results are
not affected by the selection of parameter δ of the iterative
refinement approach.

Based on our study on the number of sampled points in
Section III.C, the statistical data show our RMS difference
obtained using the proposed model is equal to 0 mm, whereas
it is ≤ 0.5780 mm under the model of [16] for phantom 3.
Similar situation can be obtained for phantoms 1 and 2.
Therefore, the simulation results are not affected by the num-
ber of sample points adopted.

Based on our study on the vessel radius in Section III.D,
the statistical data show our RMS difference obtained using
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FIGURE 6. RMS vs. 256 simulations for possible combinations of start and end points in phantom 2.

TABLE 2. Statistics of 50 running times (in seconds) for phantoms 1, 2, and 3.

the proposed model is ≤ 0.0632 mm, whereas it is ≤
1.3561 mm under the model of [16] for phantom 3. Similar
situation can be obtained for phantoms 1 and 2. Therefore,
the simulation results are only slightly affected by the change
of vessel radius, such as vessel expansion and constriction.

Based on our study on the start and end points in
Section III.E. In Figure 5, the statistical data show our
RMS difference obtained using the proposed model is ≤
0.0461 mm, whereas it is ≤ 0.8103 mm under the model
of [16] for phantom 3. Similar comparison result can be made
for phantoms 1 and 2. Therefore, the proposed method is
more robust to the position and angle of the start and end
points. In Figure 6, we still obtain a similar comparison result
using a different value of parameter δ for phantom 2.

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel network-based
method to simulate the guidewire path for surgical opera-
tions. The proposed method improves the iterative refine-
ment procedure by canceling the parameter α of the existing
work [16] and by adopting an adaptive sampling algorithm.
The optimal path is determined based on the AOE network
method and the optimization approach based on two ends of
the guidewire. Simulation results indicate that the proposed
method presents more accurate and faster running time than
the existing method of [16]. In the future, we would like to
incorporate vascular deformation into the proposed method.
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