J. R. Lepock, How do cells respond to their thermal environment?, Int. J. Hyperthermia, vol.21, pp.681-687, 2005.

J. L. Roti-roti, Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events, Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Group, vol.24, pp.3-15, 2008.

A. Lazlo, The effects of hyperthermia on mammalian cell structure and function, Cell Prolif, vol.25, pp.59-87, 1992.

H. H. Kampinga, J. R. Dynlacht, and E. Dikomey, Mechanism of radiosensitization by hyperthermia (> or = 43 degrees C) as derived from studies with DNA repair defective mutant cell lines, Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Group, vol.20, pp.131-139, 2004.

G. C. Li, N. F. Mivechi, and G. Weitzel, Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia, Int. J. Hyperthermia, vol.11, pp.459-488, 1995.

T. Mantso, Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma, Sci. Rep, vol.8, p.10724, 2018.

R. I. Morimoto, The heat shock response: systems biology of proteotoxic stress in aging and disease, Cold Spring Harb. Symp. Quant. Biol, vol.76, pp.91-99, 2011.

A. Arrigo, Analysis of HspB1 (Hsp27) oligomerization and phosphorylation patterns and its interaction with specific client polypeptides, Methods Mol. Biol. Clifton NJ, vol.1709, pp.163-178, 2018.

A. Vidyasagar, N. A. Wilson, and A. Djamali, Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target, Fibrogenesis Tissue Repair, vol.5, p.7, 2012.

M. Bedoya, A. M. Del-rio, J. Chiang, and C. L. Brace, Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model, Med. Phys, vol.41, 2014.

J. W. Hunt, R. Lalonde, H. Ginsberg, S. Urchuk, and A. Worthington, Rapid heating: critical theoretical assessment of thermal gradients found in hyperthermia treatments, Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Group, vol.7, pp.703-718, 1991.

C. S. Kim, Effect of simultaneous pulsed hyperthermia and pulsed radiation treatment on survival of SiHa cells, Int. J. Hyperthermia, vol.14, pp.573-581, 1998.

D. M. Simanovskii, Cellular tolerance to pulsed hyperthermia, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, vol.74, p.11915, 2006.

C. D. Clark, W. J. Marshall, and R. J. Thomas, Theoretical analysis of multiple-pulse thermal damage thresholds of the retina, J. Laser Appl, vol.25, p.12005, 2013.

J. E. Johnson, K. F. O'shaughnessy, and S. Kim, Microwave thermolysis of sweat glands, Lasers in Surgery and Medicine, 2012.

H. Fallahi and P. Prakash, Antenna designs for microwave tissue ablation, Crit. Rev. Biomed. Eng, vol.46, 2018.

H. Fallahi, Microwave antennas for thermal ablation of benign adrenal adenomas, Biomed. Phys. Eng. Express, vol.5, p.25044, 2019.

D. A. Hodgson, Microwave endometrial ablation: development, clinical trials and outcomes at three years, BJOG Int. J. Obstet. Gynaecol, vol.106, pp.684-694, 1999.

H. Luyen, F. Gao, S. C. Hagness, and N. Behdad, Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver, IEEE Trans. Biomed. Eng, vol.61, pp.1702-1710, 2014.

C. P. Hancock, N. Dharmasiri, M. White, and A. M. Goodman, The design and development of an integrated multi-functional microwave antenna structure for biological applications, IEEE Trans. Microw. Theory Tech, vol.61, pp.2230-2241, 2013.

J. Yoon, High-frequency microwave ablation method for enhanced cancer treatment with minimized collateral damage, Int. J. Cancer, vol.129, pp.1970-1978, 2011.

M. Zhadobov, S. I. Alekseev, Y. Le-dréan, R. Sauleau, and E. E. Fesenko, Millimeter waves as a source of selective heating of skin, Bioelectromagnetics, vol.36, pp.464-475, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187403

M. Zhadobov, Microscale temperature and SAR measurements in cell monolayer models exposed to millimeter waves, Bioelectromagnetics, vol.38, pp.11-21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01436768

A. R. Guraliuc, M. Zhadobov, O. D. Sagazan, and R. Sauleau, Solid phantom for body-centric propagation measurements at 60 GHz, IEEE Trans. Microw. Theory Tech, vol.62, pp.1373-1380, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114560

W. J. Ellison, Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 °C, J. Phys. Chem. Ref. Data, vol.36, pp.1-18, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00160084

S. I. Alekseev, M. C. Ziskin, and E. E. Fesenko, Problems of using a thermocouple for measurements of skin temperature rise during the exposure to millimeter waves, Biophysics, vol.56, p.525, 2011.

S. I. Alekseev and M. C. Ziskin, Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects, IEEE Trans. Biomed. Eng, vol.48, pp.1013-1019, 2001.

S. I. Alekseev and M. C. Ziskin, Local heating of human skin by millimeter waves: a kinetics study, Bioelectromagnetics, vol.24, pp.571-581, 2003.

T. C. Cetas and J. F. Thermometry-;-lehmann, Therapeutic heat and cold, pp.35-69, 1982.

P. B. Dunscombe, R. T. Constable, and J. Mclellan, Minimizing the self-heating artefacts due to the microwave irradiation of thermocouples, Int. J. Hyperthermia, vol.4, pp.437-482, 1988.

P. B. Dunscombe, J. Mclellan, and K. Malaker, Heat production in microwave-irradiated thermocouples, Med. Phys, vol.13, pp.457-61, 1986.

R. T. Constable, P. B. Dunscombe, A. Tsoukatos, and K. Malaker, Perturbation of the temperature distribution in microwave irradiated tissue due to the presence of metallic thermometers, Med. Phys, vol.14, pp.385-393, 1987.

L. Quément and C. , Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression, Bioelectromagnetics, vol.35, pp.444-451, 2014.

P. Pandey, Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3, Oncogene, vol.19, pp.1975-1981, 2000.

A. J. Haas, Y. Le-page, M. Zhadobov, R. Sauleau, and Y. Le-dréan, Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening, Neurosci. Lett, vol.618, pp.58-65, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281481

S. A. Sapareto and W. C. Dewey, Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.10, pp.787-800, 1984.

J. A. Pearce, Comparative analysis of mathematical models of cell death and thermal damage processes, Int. J. Hyperthermia, vol.29, pp.262-280, 2013.

T. Chen, J. Guo, C. Han, M. Yang, and X. Cao, Heat Shock Protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway, J. Immunol, vol.182, p.1449, 2009.

K. Nytko, P. Thumser-henner, M. Weyland, S. Scheidegger, and C. Bley, Cell line-specific efficacy of thermoradiotherapy in human and canine cancer cells in vitro, PloS One, vol.14, 2019.

S. Uesugi, K. Yamashita, K. Nakashima, and H. Ito, Apoptotic cell death induced by local brain hyperthermia in a rat glioma model, Acta Neuropathol. (Berl.), vol.96, pp.351-356, 1998.

K. Ahmed, Y. Tabuchi, and T. Kondo, Hyperthermia: an effective strategy to induce apoptosis in cancer cells, Apoptosis, vol.20, pp.1411-1419, 2015.

D. W. Nicholson, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature, vol.376, pp.37-43, 1995.

, Caspase-3 activation -An indicator of apoptosis in image-based assays, Novus Biologicals, p.3, 2019.

T. Rogalla, Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor ? by phosphorylation, J. Biol. Chem, vol.274, pp.18947-18956, 1999.

S. Dai, Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin, J. Proteome Res, vol.7, pp.4384-4395, 2008.

M. N. Rylander, Y. Feng, J. Bass, and K. R. Diller, Thermally induced injury and heat-shock protein expression in cells and tissues, Ann. N. Y. Acad. Sci, vol.1066, pp.222-242, 2006.

G. M. Hahn and G. C. Li, Thermotolerance and heat shock proteins in mammalian cells, Radiat. Res, vol.92, pp.452-457, 1982.

M. P. Garcia, J. R. Cavalheiro, and M. H. Fernandes, Acute and long-term effects of hyperthermia in B16-F10 melanoma cells, PLoS ONE, vol.7, p.35489, 2012.

Y. G. Shellman, Hyperthermia induces endoplasmic reticulum-mediated apoptosis in melanoma and non-melanoma skin cancer cells, J. Invest. Dermatol, vol.128, pp.949-956, 2008.

A. Nussenzweig, P. Burgman, and G. C. Li, The role of heat shock proteins in thermotolerance, Advances in Molecular and Cell Biology, vol.19, pp.261-285, 1997.

S. A. Sapareto, L. E. Hopwood, W. C. Dewey, M. R. Raju, and J. W. Gray, Effects of hyperthermia on survival and progression of Chinese Hamster Ovary cells, Cancer Res, vol.38, pp.393-400, 1978.

J. R. Lepock and J. Kruuv, Thermotolerance as a possible cause of the critical temperature at 43 degrees in mammalian cells, Cancer Res, vol.40, pp.4485-4488, 1980.

H. M. Beere, Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome, Nat. Cell Biol, vol.2, pp.469-475, 2000.

M. A. Mackanos and C. H. Contag, Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation, J Biomed Opt, vol.16, p.78002, 2011.

J. M. Bruey, Hsp27 negatively regulates cell death by interacting with cytochrome c, Nat. Cell Biol, vol.2, pp.645-652, 2000.

C. Garrido, HSP27 inhibits cytochrome c -dependent activation of procaspase-9, FASEB J, vol.13, pp.2061-2070, 1999.

S. G. Kennedy, E. S. Kandel, T. K. Cross, and N. Hay, Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria, Mol. Cell. Biol, vol.19, pp.5800-5810, 1999.

S. J. Charette, J. N. Lavoie, H. Lambert, and J. Landry, Inhibition of Daxx-mediated apoptosis by heat shock protein 27, Mol. Cell. Biol, vol.20, pp.7602-7612, 2000.

R. Bakthisaran, R. Tangirala, and C. M. Rao, Small heat shock proteins: role in cellular functions and pathology, Biochim. Biophys. Acta, vol.1854, pp.291-319, 2015.

B. Lelj-garolla and A. G. Mauk, Self-association of a small heat shock protein, J. Mol. Biol, vol.345, pp.631-642, 2005.

B. Lelj-garolla and A. G. Mauk, Self-association and chaperone activity of Hsp27 are thermally activated, J. Biol. Chem, vol.281, pp.8169-8174, 2006.

S. I. Alekseev, M. S. Ziskin, and N. V. Kochetkova, Effects of millimeter wavelength electromagnetic radiation on neurons: electrophysiological study, Crit. Rev. Biomed. Eng, vol.28, pp.52-59, 2000.

K. R. Foster, Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems, IEEE Trans. Plasma Sci, vol.28, pp.15-23, 2000.

K. Schoenbach and S. Xiao, Method and system for treating a biological target region using pulsed electromagnetic radiation, 2010.