F. A. Cotton, Metal Atom Clusters in Oxide Systems, Inorg. Chem, vol.1964, issue.9, pp.1217-1220

A. W. Maverick and H. B. Gray, Luminescence and Redox Photochemistry of the

(. Molybdenum and . Ii, Cluster Mo6cl14(2-1), J. Am. Chem. Soc, vol.103, issue.5, pp.1298-1300, 1981.

D. G. Nocera and H. B. Gray, Electrochemical reduction of molybdenum(II) and tungsten

, Electrogenerated chemiluminescence of tetradecachlorohexamolybdate(2-) ion, halide cluster ions, vol.106, pp.824-825, 1984.

T. V. Larina, V. N. Ikorskii, N. T. Vasenin, V. F. Anufrienko, N. G. Naumov et al.,

E. V. Fedorov and V. E. , Electronic state of rhenium complexes with octahedral chalcocyanide cluster anions, Russ. J. Coord. Chem, issue.3, pp.554-556, 2002.

E. G. Tulsky, N. R. Crawford, S. A. Baudron, P. Batail, and J. R. Long, Cluster-to-Metal Magnetic Coupling: Synthesis and Characterization of 25-Electron, J. Am. Chem. Soc, vol.125, issue.50, pp.15543-15553, 2003.

A. Barras, S. Cordier, and R. Boukherroub, Fast photocatalytic degradation of rhodamine B over [Mo6Br8(N3)6]2-cluster units under sun light irradiation, Appl. Catal., B, vol.2012, pp.1-8
URL : https://hal.archives-ouvertes.fr/hal-00821917

A. Beltran, M. Mikhailov, M. N. Sokolov, V. Perez-laguna, A. Rezusta et al.,

J. Galindo and F. , A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus

, J. Mater. Chem. B, vol.2016, issue.36, pp.5975-5979

D. Buzek, J. Hynek, M. Kucerakova, K. Kirakci, J. Demel et al., MoII Cluster Complex-Based Coordination Polymer as an Efficient Heterogeneous Catalyst in the Suzuki-Miyaura Coupling Reaction, Eur. J. Inorg. Chem, issue.28, pp.4668-4673, 2016.

M. Feliz, M. Puche, P. Atienzar, P. Concepcion, S. Cordier et al., In situ generation of active molybdenum octahedral clusters for photocatalytic hydrogen production from water and their stabilization onto graphene oxide surfaces, ChemSusChem, vol.2016, issue.15, pp.1963-1971

J. Bigeon, N. Huby, M. Amela-cortes, Y. Molard, A. Garreau et al.,

J. L. Duvail, Efficient active waveguiding properties of Mo 6 nano-cluster-doped polymer nanotubes, Nanotechnology, vol.27, issue.25, p.255201, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01316219

M. Robin, N. Dumait, M. Amela-cortes, C. Roiland, M. Harnois et al., Direct Integration of Red-NIR Emissive Ceramic-like AnM6Xi8Xa6 Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions, Chem. -Eur. J, vol.24, issue.19, pp.4825-4829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01716211

A. A. Krasilnikova, M. A. Shestopalov, K. A. Brylev, I. A. Kirilova, O. P. Khripko et al., Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents, J. Inorg. Biochem, vol.144, pp.13-17, 2015.

K. Kirakci, P. Kubát, K. Fejfarová, J. Martin?ík, M. Nikl et al., X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators, Inorg. Chem, vol.55, issue.2, pp.803-809, 2016.

S. M. Miroshnichenko, E. V. Vorontsova, A. V. Chechushkov, K. E. Trifonova, and M. Fufaeva,

S. Kretov, E. I. Mironov, Y. V. Poveshchenko, A. F. Lang, K. Shestopalov et al., Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer, Eur. J. Pharm. Biopharm, vol.2017, issue.21, pp.95-105, 2018.

M. A. Mikhailov, K. A. Brylev, P. A. Abramov, E. Sakuda, S. Akagi et al., Synthetic Tuning of Redox, Spectroscopic, and Photophysical Properties of {Mo6I8}4+ Core Cluster Complexes by Terminal Carboxylate Ligands, Inorg. Chem, issue.17, pp.8437-8445, 2016.

L. Riehl, A. Seyboldt, M. Strobele, D. Enseling, T. Justel et al.,

H. J. Meyer, A ligand substituted tungsten iodide cluster: luminescence vs. singlet oxygen production, Dalton Trans, vol.45, issue.39, pp.15500-15506, 2016.

S. Akagi, S. Fujii, T. Horiguchi, and N. Kitamura,

. Electrochemical, Photophysical Properties of Octahedral Hexamolybdenum(II) Clusters

?. , Br or I

. L-=-carboxylate, J. Cluster Sci, vol.2017, issue.2, pp.757-772

K. Kirakci, J. Zelenka, M. Rumlova, J. Martincik, M. Nikl et al., Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy, J. Mater. Chem. B, vol.6, issue.26, pp.4301-4307, 2018.

M. Amela-cortes, S. Paofai, S. Cordier, H. Folliot, and Y. Molard, Tuned Red NIR phosphorescence of polyurethane hybrid composites embedding metallic nanoclusters for oxygen sensing, Chem. Commun, vol.51, pp.8177-8180, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01146240

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting

, Soc. Rev, vol.38, issue.1, pp.253-278, 2009.

M. G. Walter, E. L. Warren, J. R. Mckone, S. W. Boettcher, Q. Mi et al., Solar Water Splitting Cells, Chem. Rev, vol.110, issue.11, pp.6446-6473, 2010.

K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, J. Photochem. Photobiol., C, vol.12, issue.4, pp.237-268, 2011.

X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting

, Chem. Soc. Rev, vol.44, issue.15, pp.5148-5180, 2015.

M. Watanabe, Dye-sensitized photocatalyst for effective water splitting catalyst

. Technol, Adv. Mater, vol.2017, issue.1, pp.705-723

D. Zheng, X. Pang, M. Wang, Y. He, C. Lin et al., Unconventional Route to Hairy

, Plasmonic/Semiconductor Core/Shell Nanoparticles with Precisely Controlled Dimensions and Their Use in Solar Energy Conversion, Chem. Mater, vol.27, issue.15, pp.5271-5278, 2015.

M. Wang, X. Pang, D. Zheng, Y. He, L. Sun et al., Nonepitaxial growth of uniform and precisely size-tunable core/shell nanoparticles and their enhanced plasmon-driven photocatalysis, J. Mater. Chem. A, vol.2016, issue.19, pp.7190-7199

M. Wang, M. Ye, J. Iocozzia, C. Lin, and Z. Lin, Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites, Adv. Science, vol.2016, issue.6, p.1600024

J. Yang, H. Fu, D. Yang, W. Gao, R. Cong et al.,

, 3S4 (0.1 ? y ? 0.2): Optimize Visible Light Photocatalytic H2 Evolution by Fine Modulation of Band Structures, Zn1-2y(CuGa)yGa1.7In0, vol.54, pp.2467-2473, 2015.

W. Yu, S. Zhang, J. Chen, P. Xia, M. H. Richter et al.,

T. Peng, Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution, J. Mater. Chem. A, vol.6, issue.32, pp.15668-15674, 2018.

Q. Hao, Y. Song, H. Ji, Z. Mo, X. She et al., Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution, Appl. Surf. Sci, vol.459, pp.845-852, 2018.

Y. Xia, B. Cheng, J. Fan, J. Yu, and G. Liu, Unraveling Photoexcited Charge Transfer Pathway and Process of CdS/Graphene Nanoribbon Composites toward Visible-Light Photocatalytic Hydrogen Evolution, Small, vol.2019, issue.34, p.1902459

C. Chang, Y. Lin, H. Weng, and Y. Wei, Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts, Appl. Surf. Sci, vol.451, pp.198-206, 2018.

D. Xu, L. Li, R. He, L. Qi, L. Zhang et al., Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance, Appl. Surf. Sci, vol.434, pp.620-625, 2018.

F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water

, Chem. Mater, vol.20, issue.1, pp.35-54, 2008.

Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, Energy Environ. Sci, vol.2011, issue.4, pp.1113-1132

J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri et al., Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting, Adv. Mater, vol.28, issue.2, pp.215-230, 2016.

P. V. Kamat, Graphene-Based Nanoassemblies for Energy Conversion, J. Phys. Chem

. Lett, , vol.2, pp.242-251, 2011.

L. Han, P. Wang, and S. Dong, Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst, Nanoscale, vol.2012, issue.19, pp.5814-5825

Q. Xiang and J. Yu, Graphene-Based Photocatalysts for Hydrogen Generation, J. Phys

, Chem. Lett, vol.2013, issue.5, pp.753-759

J. Huo, Y. Zhang, W. Zou, X. Hu, Q. Deng et al., Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production, Catal. Sci. Technol, vol.2019, issue.11, pp.2716-2727

Y. Attia and M. Samer, Metal clusters: New era of hydrogen production, Renew. Sust. Energy Rev, vol.79, pp.878-892, 2017.

S. Peiris, J. Mcmurtrie, and H. Zhu, Metal nanoparticle photocatalysts: emerging processes for green organic synthesis, Catal. Sci. Technol, vol.6, issue.2, pp.320-338, 2016.

H. Kim, G. Moon, D. Monllor-satoca, Y. Park, and W. Choi, Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet, J. Phys. Chem. C, vol.2012, issue.1, pp.1535-1543

K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang et al., MoS2/Graphene Cocatalyst for Efficient Photocatalytic H2 Evolution under Visible Light Irradiation, ACS Nano, vol.8, issue.7, pp.7078-7087, 2014.

H. Li, K. Yu, C. Li, Z. Tang, B. Guo et al., Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst, Scientific Reports, vol.5, p.18730, 2015.

V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos et al.,

R. Zboril, Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications, Chem. Rev, vol.116, issue.9, pp.5464-5519, 2016.

X. Li, J. Yu, S. Wageh, A. A. Al-ghamdi, and J. Xie, Graphene in Photocatalysis: A Review, Small, vol.12, issue.48, pp.6640-6696, 2016.

B. Fabre, S. Cordier, Y. Molard, C. Perrin, S. Ababou-girard et al., Electrochemical and Charge Transport Behavior of Molybdenum-Based Metallic Cluster Layers Immobilized on Modified n-and p-Type Si(111) Surfaces, J. Phys. Chem. C, issue.40, pp.17437-17446, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429017

C. Godet, S. Ababou-girard, B. Fabre, Y. Molard, A. B. Fadjie-djomkam et al., Surface immobilization of Mo6I8 octahedral cluster cores on functionalized amorphous carbon using a pyridine complexation strategy, Diamond Relat. Mater, vol.55, pp.131-138, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148517

S. Cordier, B. Fabre, Y. Molard, A. Fadjie-djomkam, P. Turban et al.,

S. Girard and C. Godet, Elaboration, Characterizations, and Energetics of Robust Mo6 Cluster-Terminated Silicon-Bound Molecular Junctions, J. Phys. Chem. C, vol.120, issue.4, pp.2324-2334, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269742

H. Wang, K. Ma, B. Xu, and W. Tian, Tunable Supramolecular Interactions of Aggregation-Induced Emission Probe and Graphene Oxide with Biomolecules: An Approach toward

, Ultrasensitive Label-Free and, Turn-On" DNA Sensing. Small, vol.12, issue.47, pp.6613-6622, 2016.

S. Sabater, J. A. Mata, and E. Peris, Immobilization of Pyrene-Tagged Palladium and Ruthenium Complexes onto Reduced Graphene Oxide: An Efficient and Highly Recyclable Catalyst for Hydrodefluorination, Organomet, vol.34, issue.7, pp.1186-1190, 2015.

X. Zhang, E. H. Huisman, M. Gurram, W. R. Browne, B. J. Van-wees et al.,

, Supramolecular Chemistry on Graphene Field-Effect Transistors. Small, vol.10, issue.9, pp.1735-1740, 2014.

X. Zhou, T. Wu, K. Ding, B. Hu, M. Hou et al., Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer, Chem. Commun, vol.46, issue.3, pp.386-388, 2010.

J. Wang, Z. Chen, and B. Chen, Adsorption of Polycyclic Aromatic Hydrocarbons by

G. Graphene, M. Oxide-nanosheets-;-shakourian-fard, Z. Jamshidi, A. Bayat, and G. Kamath, Meta-Hybrid Density Functional Theory Study of Adsorption of Imidazolium-and Ammonium-Based Ionic Liquids on Graphene Sheet, Environ. Sci. Technol, vol.48, issue.9, pp.7095-7108, 2014.

S. Srinivasan, W. H. Shin, J. W. Choi, A. Coskun, K. Kirakci et al., Hexamolybdenum Cluster Complexes with Pyrene and Anthracene Carboxylates: Ultrabright Red Emitters with the Antenna Effect, Eur. J. Inorg. Chem, vol.2013, issue.1, pp.2331-2336, 2014.

W. Preetz, D. Bublitz, H. G. Von-schnering, and J. Saßmannshausen, Darstellung, Kristallstruktur und spektroskopische Eigenschaften der Clusteranionen

=. Xa, . Cl, and I. Br, Z. Anorg. Allg. Chem, vol.620, issue.2, pp.234-246, 1994.

J. R. Schoonover, T. C. Zietlow, D. L. Clark, J. A. Heppert, M. H. Chisholm et al.,

B. Sattelberger, A. P. Woodruff, W. H. Mo, W. , and Y. Cl, Resonance Raman Spectra of [M6X8Y6]2-Cluster Complexes, Br, I). Inorg. Chem, issue.22, pp.6606-6613, 1996.

A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun, vol.143, issue.1, pp.47-57, 2007.

S. A. Asher, Ultraviolet resonance Raman spectrometry for detection and speciation of trace polycyclic aromatic hydrocarbons, Anal. Chem, vol.56, issue.4, pp.720-724, 1984.

R. Rumelfanger, S. A. Asher, and M. B. Perry,

, Polycyclic Aromatic Hydrocarbons in Coal Liquid Distillates. Appl. Spectro, vol.42, issue.2, pp.267-272, 1988.

J. Larsen, F. Puntoriero, T. Pascher, N. Mcclenaghan, S. Campagna et al., Extending the Light-Harvesting Properties of Transition-Metal Dendrimers, ChemPhysChem, vol.8, issue.18, pp.2643-2651, 2007.

M. Amelia, A. Lavie-cambot, N. D. Mcclenaghan, and A. Credi, A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot, Chem. Commun, vol.47, issue.1, pp.325-327, 2011.

R. Ramirez-tagle and R. Arratia-pérez, Electronic structure and molecular properties of the

X. Cl,

L. Cl, . Br, and . Clusters, Chem. Phys. Lett, vol.460, issue.4-6, pp.438-441, 2008.

K. Costuas, A. Garreau, A. Bulou, B. Fontaine, J. Cuny et al.,

Y. Molard, J. L. Duvail, E. Faulques, and S. Cordier, Combined theoretical and time-resolved emission, Phys. Chem. Chem. Phys, vol.2015, issue.43, pp.28574-28585
URL : https://hal.archives-ouvertes.fr/hal-01222623

D. S. Karpovich and G. J. Blanchard, Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale, J. Phys. Chem, issue.12, pp.3951-3958, 1995.

F. Camerel, F. Kinloch, O. Jeannin, M. Robin, S. K. Nayak et al., Ionic Columnar Clustomesogens: Associations between Anionic Hexanuclear Rhenium Clusters and Liquid Crystalline Triphenylene Tethered Imidazoliums
URL : https://hal.archives-ouvertes.fr/hal-01862457

, Dalton Trans, vol.47, pp.10884-10896, 2018.

W. J. Vining, J. V. Caspar, and T. J. Meyer, The influence of environmental effects on excited-state lifetimes. The effect of ion pairing on metal-to-ligand charge transfer excited states

, J. Phys. Chem, issue.7, pp.1095-1099, 1985.

K. P. Divya, S. Savithri, and A. Ajayaghosh, A fluorescent molecular probe for the identification of zinc and cadmium salts by excited state charge transfer modulation, Chem. Commun, vol.50, issue.45, pp.6020-6022, 2014.

Y. Ma, S. Liu, H. Yang, Y. Zeng, P. She et al.,

W. Wong, Luminescence Color Tuning by Regulating Electrostatic Interaction in Light-Emitting Devices and Two-Photon Excited Information Decryption, Inorg. Chem, vol.2017, issue.5, pp.2409-2416

Y. Ma, P. She, K. Y. Zhang, H. Yang, Y. Qin et al., Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper, Nature Commun, vol.9, issue.1, p.3, 2018.

S. Pankasem and J. K. Thomas, Reflectance spectroscopic studies of the cation radical and the triplet of pyrene on alumina, J. Phys. Chem, issue.18, pp.6990-6996, 1991.

J. Pina, D. Pinheiro, B. Nascimento, M. Pineiro, and J. S. Seixas-de-melo, The effect of polyaromatic hydrocarbons on the spectral and photophysical properties of diaryl-pyrrole derivatives: an experimental and theoretical study, Phys. Chem. Chem. Phys, vol.2014, issue.34, pp.18319-18326

T. Takahashi, K. Shizu, Y. Takuma, K. Togashi, and C. Adachi, Donor-acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics, Sci. Tech. Adv. Mater, p.10, 2014.

R. Kurata, K. Tanaka, and A. Ito, Isolation and Characterization of Persistent Radical Cation and Dication of 2,7-Bis(dianisylamino)pyrene, J. Org. Chem, vol.81, issue.1, pp.137-145, 2016.

L. Cao, M. J. Meziani, S. Sahu, Y. Sun, S. P. Economopoulos et al., Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials, Acc. Chem. Res, vol.46, issue.1, 2013.

M. De-miguel, M. Álvaro, and H. García, Graphene as a Quencher of Electronic Excited States of Photochemical Probes, J. Phys. Chem. C, vol.2012, issue.5, pp.2849-2857, 2015.

P. Atienzar, A. Primo, C. Lavorato, R. Molinari, and H. García, Preparation of Graphene Quantum Dots from Pyrolyzed Alginate, Langmuir, vol.29, issue.20, pp.6141-6146, 2013.

S. Min and G. Lu, Sites for High Efficient Photocatalytic Hydrogen Evolution

, Layered MoS2 Cocatalyst Confined on Graphene Sheets-The Role of Graphene, J. Phys. Chem. C, vol.2012, issue.48, pp.25415-25424

M. Liu, F. Li, Z. Sun, L. Ma, L. Xu et al., Noble-metal-free photocatalysts MoS2

, graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution, Chem. Commun, vol.50, issue.75, pp.11004-11007, 2014.

M. Latorre-sánchez, I. Esteve-adell, A. Primo, and H. García, Innovative preparation of MoS2-graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation, Carbon, vol.81, pp.587-596, 2015.

F. Meng, J. Li, S. K. Cushing, M. Zhi, and N. Wu, Solar Hydrogen Generation by Nanoscale p-n Junction of p-type Molybdenum Disulfide/n-type Nitrogen-Doped Reduced Graphene Oxide

, J. Am. Chem. Soc, vol.135, issue.28, pp.10286-10289, 2013.

Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi et al.,

H. Tateishi, Y. Watanabe, and S. Amano, Photoreaction of Graphene Oxide Nanosheets in Water, J. Phys. Chem. C, issue.39, pp.19280-19286, 2011.

G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang et al., Graphene-Based Materials for

, Hydrogen Generation from Light-Driven Water Splitting, Adv. Mater, vol.25, issue.28, pp.3820-3839, 2013.

K. Furuta, K. Tomokiyo, M. T. Kuo, T. Ishikawa, and M. Suzuki, Molecular design of glutathione-derived biochemical probes targeting the GS-X pump, Tetrahedron, vol.55, issue.24, pp.7529-7540, 1999.

S. Wittmann, A. Schätz, R. N. Grass, W. J. Stark, and O. Reiser, A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water

, Chem. Int. Ed, vol.2010, issue.10, pp.1867-1870

, Mo6I8(OCOC2F5)6] 2-is one of the most emissive metal cluster, but demonstrates a low photocatalytic H2 production from water splitting. Its anchoring onto graphene using pyrene containing organic cations as supramolecular linkers, vol.280