, World Health Organization, Global Action Plan on Antimicrobial Resistance, 2015.

L. B. Rice, Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Infect. Dis, vol.197, pp.1079-1081, 2008.

M. Cavalheiro, P. Pais, M. Galocha, and M. C. Teixeira, Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets!, vol.9, p.332, 2018.

M. Arnold, H. E. Karim-kos, G. Byrnes, A. Antilla, J. Ferlay et al., Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory, Eur. J. Cancer, vol.51, pp.1164-1187, 2015.

J. Klastersky and M. Aoun, Opportunistic infections in patients with cancer, Ann. Oncol, vol.15, pp.329-335, 2004.

M. Plummer, C. Martel, J. Vignat, J. Ferlay, F. Bray et al., Global burden of cancers attributable to infections in 2012: a synthetic analysis, Lancet Glob. Heal, vol.4, issue.16, pp.30143-30150, 2016.

K. Hattar, C. P. Reinert, U. Sibelius, M. Y. Gökyildirim, F. S. Subtil et al., Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro, Cancer Immunol. Immunother, vol.66, pp.799-809, 2017.

A. Ramirez-garcia, A. Rementeria, J. M. Aguirre-urizar, M. D. Moragues, A. Antoran et al., Candida albicans and cancer: Can this yeast induce cancer development or progression?, Crit. Rev

. Microbiol, , vol.42, pp.181-193, 2016.

M. R. Felício, O. N. Silva, S. Gonçalves, N. C. Santos, and O. L. Franco, Peptides with Dual Antimicrobial and Anticancer Activities., Front. Chem, vol.5, p.5, 2017.

I. Landini, A. Lapucci, A. Pratesi, L. Massai, C. Napoli et al., Selection and characterization of a human ovarian cancer cell line resistant to auranofin, Oncotarget, vol.8, pp.96062-96078, 2017.

C. Roder and M. J. Thomson, Auranofin: repurposing an old drug for a golden new age, Drugs R. D, vol.15, pp.13-20, 2015.

T. Zou, C. T. Lum, C. Lok, J. Zhang, and C. Che, Chemical biology of anticancer gold( iii ) and gold( i ) complexes, Chem. Soc. Rev, vol.44, pp.8786-8801, 2015.

Z. H. Siddik, Cisplatin: mode of cytotoxic action and molecular basis of resistance, Oncogene, vol.22, pp.7265-7279, 2003.

G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre et al., Drug resistance in cancer: an overview, Cancers (Basel), vol.6, pp.1769-1792, 2014.

E. I. Stiefel, Dithiolene chemistry : synthesis, properties, and applications, 2004.

Z. H. Chohan, A. U. Shaikh, and C. T. Supuran, In-vitro Antibacterial, Antifungal and cytotoxic activity of cobalt (II), copper (II), nickel (II) and zinc (II) complexes with furanylmethyl-and thienylmethyl-dithiolenes, J. Enzyme Inhib. Med. Chem, vol.21, pp.733-740, 2006.

A. Pintus, M. C. Aragoni, M. A. Cinellu, L. Maiore, F. Isaia et al., Au(pyb-H)(mnt)]: A novel gold(III) 1,2-dithiolene cyclometalated complex with antimicrobial activity (pyb-H = Cdeprotonated 2-benzylpyridine; mnt = 1,2-dicyanoethene-1,2-dithiolate), J. Inorg. Biochem, vol.170, pp.188-194, 2017.

D. Belo, J. Morgado, E. B. Lopes, I. C. Santos, S. Rabaça et al.,

A. I. Neves, I. C. Santos, D. Belo, and M. Almeida, Cation and ligand roles in the coordination of FeIII bisdithiolene complexes; the crystal structures of (BrBzPy)2[Fe(qdt)2]2 and [Fe(?-tpdt)2]22? salts, CrystEngComm, pp.1046-1053, 2009.

D. Belo, C. Rodrigues, I. C. Santos, S. Silva, T. Eusébio et al.,

M. J. Rodrigues, M. Matos, M. T. Almeida, R. T. Duarte, and . Henriques, Synthesis, crystal structure and magnetic properties of bis(3,4;3?,4?-ethylenedithio)2,2?,5,5?-tetrathiafulvalene-bis(cyanoimidodithiocarbonate)aurate(III), Polyhedron, vol.25, pp.1209-1214, 2006.

R. A. Silva, A. I. Neves, E. B. Lopes, I. C. Santos, J. T. Coutinho et al., A Weakly Disordered Molecular Spin-Ladder System, vol.52, pp.5300-5306, 2013.

R. A. Silva, I. C. Santos, J. Wright, J. T. Coutinho, L. C. Pereira et al., New Ladder Structures and Spin-Ladder Behavior, vol.54, pp.7000-7006, 2015.

A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, The Preparation and Characterization of Four-Coordinate Complexes Related by Electron-Transfer Reactions, Inorg. Chem, vol.2, pp.1227-1232, 1963.

B. G. Werden, E. Billig, and H. B. Gray, Transition Metal Complexes Containing 1,1-cyanocarbimate ion, Inorg. Chem, vol.6, pp.229-232, 1967.

X. Ribas, M. Mas-torrent, C. Rovira, J. Veciana, J. C. Dias et al., Molecular compounds based on DT-TTF and

, Au(cdc)2 complex. Structural, magnetic and electrical properties, Polyhedron, vol.22, pp.2415-2422, 2003.

L. J. Theriot, K. K. Ganguli, S. Kavarnos, and I. Bernal, Metal complexes of 2,3-quinoxalinedithiol, J. Inorg. Nucl. Chem, vol.31, pp.80096-80101, 1969.

K. K. Ganguli, G. O. Carlisle, H. J. Hu, L. J. Theriot, and I. Bernal, Cobalt and iron complexes of 2,3-quinoxalinedithiol, J. Inorg. Nucl. Chem, vol.33, pp.80683-80691, 1971.

D. Simão, E. B. Lopes, I. C. Santos, V. Gama, R. T. Henriques et al., Charge transfer salts based on Cu(qdt)2, Ni(qdt)2 and Au(qdt)2 anions, Synth. Met, vol.102, pp.1613-1614, 1999.

E. S. Duthie, L. L. Lorenz, and S. Coagulase, Mode of Action and Antigenicity, Microbiology, vol.6, pp.95-107, 1952.

T. D. Minogue, H. A. Daligault, K. W. Davenport, K. A. Bishop-lilly, and S. M. ,

D. C. Broomall, P. S. Bruce, O. Chain, S. R. Chertkov, T. Coyne et al., obtained before the clinical introduction of fluconazole, Antimicrob. Agents Chemother, vol.49, pp.783-787, 2005.

A. M. Gillum, E. Y. Tsay, and D. R. Kirsch, Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Mol. Gen. Genet, vol.198, pp.179-182, 1984.

J. P. Costa, M. J. Pinheiro, S. A. Sousa, A. M. Botelho-do-rego, F. Marques et al., Antimicrobial Activity of Silver Camphorimine Complexes against Candida Strains., Antibiot, vol.8, 2019.

A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo et al., SIR 97: a new tool for crystal structure determination and refinement, J. Appl. Crystallogr, vol.32, pp.115-119, 1999.

G. M. Sheldrick, SHELXL-97 program for crystal structure refinement, 1997.

L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr, vol.32, pp.837-838, 1999.

L. J. Farrugia and . Iucr, ORTEP -3 for Windows -a version of ORTEP -III with a Graphical User Interface (GUI), J. Appl. Crystallogr, vol.30, p.565, 1997.

W. M. Ren, J. Liang, and W. , Crystal and electronic structure analysis using CAESAR, 1998.

R. Hoffmann, An Extended Hückel Theory. I. Hydrocarbons, J. Chem. Phys, vol.39, pp.1397-1412, 1963.

M. Whangbo and R. Hoffmann, The band structure of the tetracyanoplatinate chain, J. Am. Chem. Soc, vol.100, pp.6093-6098, 1978.

M. Whangbo, R. Hoffmann, and R. B. Woodward, Conjugated One and Two Dimensional Polymers, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.366, pp.23-46, 1979.

E. Canadell, E. Rachidi, S. Ravy, J. P. Pouget, L. Brossard et al., On the band electronic structure of X
URL : https://hal.archives-ouvertes.fr/jpa-00211116

M. Ni, Pd) molecular conductors and superconductors, J. Phys, vol.50, pp.2967-2981, 1989.

J. M. Cardoso, A. M. Galvão, S. I. Guerreiro, J. H. Leitão, A. C. Suarez et al.,

. Carvalho, Antibacterial activity of silver camphorimine coordination polymers, Dalton Trans, vol.45, pp.7114-7123, 2016.

L. G. Alves, P. F. Pinheiro, J. R. Feliciano, D. P. Dâmaso, J. H. Leitão et al.,

. Martins, Synthesis, antimicrobial activity and toxicity to nematodes of cyclam derivatives, Int. J. Antimicrob. Agents, vol.49, pp.646-649, 2017.

M. F. Carvalho, S. Leite, J. P. Costa, A. M. Galvão, and J. H. Leitão, Ag(I) camphor complexes: antimicrobial activity by design, J. Inorg. Biochem, vol.199, p.110791, 2019.

R. J. Lambert and J. Pearson, Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values, Clin. Microbiol. Infect, vol.88, pp.784-790, 2000.

J. M. Cardoso, S. I. Guerreiro, A. Lourenço, M. M. Alves, M. F. Montemor et al.,

J. H. Mira, M. F. Leitão, and . Carvalho, Ag(I) camphorimine complexes with antimicrobial activity towards clinically important bacteria and species of the Candida genus, PLoS One, vol.12, p.177355, 2017.

N. Esfandiari, R. K. Sharma, R. A. Saleh, A. J. Thomas, and A. Agarwal, Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa, J. Androl, vol.24, pp.862-870, 2003.

I. Fridovich, Superoxide Dismutases, and Related Matters, J. Biol. Chem, vol.272, issue.2, pp.18515-18517, 1997.

B. Kalyanaraman, V. Darley-usmar, K. J. Davies, P. A. Dennery, H. J. Forman et al.,

. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations., Free Radic, Biol. Med, vol.52, pp.1-6, 2012.

C. Francisco, S. Gama, F. Mendes, F. Marques, I. Cordeiro-dos-santos et al., Prog. Inorg. Chem, pp.233-371, 1970.

R. Williams, E. Billig, J. H. Waters, and H. B. Gray, The Toluenedithiolate and Maleonitriledithiolate Square-Matrix Systems, J. Am. Chem. Soc, vol.88, pp.43-50, 1966.

L. Aguinagalde, R. Díez-martínez, J. Yuste, I. Royo, C. Gil et al.,

. Sánchez-puelles, Auranofin efficacy against MDR Streptococcus pneumoniae and Staphylococcus aureus infections, J. Antimicrob. Chemother, vol.70, pp.2608-2617, 2015.

M. B. Harbut, C. Vilchèze, X. Luo, M. E. Hensler, H. Guo et al.,

V. Chatterjee, W. R. Nizet, P. G. Jacobs, F. Schultz, F. Wang et al., Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.4453-4458, 2015.

J. Lu and A. Holmgren, The thioredoxin antioxidant system, Free Radic, Biol. Med, vol.66, pp.75-87, 2014.

S. Thangamani, H. Mohammad, M. F. Abushahba, T. J. Sobreira, and V. E. ,

L. N. Hedrick, M. N. Paul, and . Seleem, Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens, Sci. Rep, vol.6, p.22571, 2016.

C. Marzano, V. Gandin, A. Folda, G. Scutari, A. Bindoli et al., Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatinresistant human ovarian cancer cells, Free Radic, Biol. Med, vol.42, pp.872-881, 2007.

M. Blagosklonny, Analysis of FDA approved anticancer drugs reveals the future of cancer therapy, Cell Cycle, vol.3, pp.1035-1042, 2004.

X. Xu, Z. Dang, T. Sun, S. Zhang, and H. Zhang, The role of reactive oxygen species in screening anticancer agents, Cancer Transl. Med, vol.4, pp.35-38, 2018.

W. Jakubowski and G. Bartosz, 7-dichlorofluorescin oxidation and reactive oxygen species: What does it measure?, Cell Biol. Int, vol.2, pp.757-760, 2000.

Y. Zhang, M. Dai, and Z. Yuan, Methods for the detection of reactive oxygen species, Anal. Methods, vol.10, pp.4625-4638, 2018.

H. Hwang-bo, J. Jeong, M. H. Han, C. Park, S. Hong et al.,

J. Moon, W. Cheong, Y. H. Kim, Y. H. Yoo, and . Choi, Auranofin, an inhibitor of thioredoxin reductase, induces apoptosis in hepatocellular carcinoma Hep3B cells by generation of reactive oxygen species, Gen. Physiol. Biophys, vol.36, p.117, 2017.

X. Wang, E. Perez, R. Liu, L. Yan, R. T. Mallet et al., Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells, Brain Res, vol.1132, pp.1-9, 2007.

A. U. Khan, D. Kovacic, A. Kolbanovskiy, M. Desai, K. Frenkel et al., The decomposition of peroxynitrite to nitroxyl anion (NO-) and singlet oxygen in aqueous solution, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.2984-2989, 2000.

C. F. Brayton, Dimethyl sulfoxide (DMSO): a review, Cornell Vet, vol.76, pp.61-90, 1986.

N. C. Santos, J. Figueira-coelho, J. Martins-silva, and C. Saldanha, Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects, Biochem. Pharmacol, vol.65, pp.2-9, 2003.

D. K. Perry, M. J. Smyth, H. R. Stennicke, G. S. Salvesen, P. Duriez et al., Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis, J. Biol. Chem, vol.272, pp.18530-18533, 1997.

S. J. Eron, D. J. Macpherson, K. B. Dagbay, and J. A. Hardy, Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, ACS Chem. Biol, vol.13, issue.6, pp.1279-1290, 2018.

C. K. Mirabelli, C. Sung, J. P. Zimmerman, D. T. Hill, S. Mong et al., Interactions of gold coordination complexes with DNA, Biochem. Pharmacol, vol.35, issue.86, pp.90106-90107, 1986.

G. Cohen, W. Bauer, J. Barton, and S. Lippard, Binding of cis-and trans