J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev, vol.105, pp.1103-1170, 2005.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System, Chem. Soc. Rev, vol.39, pp.1805-1834, 2010.

C. M. Santos, A. J. Harte, S. J. Quinn, and T. Gunnlaugsson, Recent Developments in the Field of Supramolecular Lanthanide Luminescent Sensors and Self-Assemblies, Coord. Chem. Rev, vol.252, pp.2512-2527, 2008.

E. G. Moore, A. P. Samuel, and K. N. Raymond, From Antenna to Assay: Lessons Learned in Lanthanide Luminescence, Acc. Chem. Res, vol.42, pp.542-552, 2009.

J. G. Bünzli, Lanthanide Luminescence for Biomedical Analyses and Imaging, Chem. Rev, vol.110, pp.2729-2755, 2010.

M. Rodrigues, Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanide-Doped Self-Assembled Polymer Monolayers, Adv. Func. Mat, vol.26, pp.200-209, 2016.

A. Gulino, F. Lupo, G. G. Condorelli, A. Motta, and I. L. Fragalà, Tunable Luminescent Properties of a Europium Complex Monolayer, J. Mat. Chem, vol.19, pp.3507-3511, 2009.

I. Del-rosal, I. C. Gerber, R. Poteau, and L. Maron, Grafting of Lanthanide Complexes on Silica Surfaces Dehydroxylated at 200 °C: A Theoretical Investigation, New J. Chem, vol.39, pp.7703-7715, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01969145

D. A. Cristaldi, S. Millesi, P. Mineo, and A. Gulino,

, Si(100) Surfaces, Engineered with Covalent Polystyrene Nanostructures, J. Phys. Chem. C, vol.117, pp.16213-16220, 2013.

D. E. Barry, J. A. Kitchen, M. Albrecht, S. Faulkner, and T. Gunnlaugsson, Near Infrared

, Lanthanide Emissive Langmuir-Blodgett Monolayers Formed Using Nd(III) Directed Self-Assembly Synthesis of Chiral Amphiphilic Ligands, Langmuir, vol.29, pp.11506-11515, 2013.

S. Hsu, M. D. Yilmaz, C. Blum, V. Subramaniam, D. N. Reinhoudt et al., Expression of Sensitized Eu3+ Luminescence at a Multivalent Interface, J. Am. Chem. Soc, vol.131, pp.12567-12569, 2009.

N. S. Murray, S. P. Jarvis, and T. Gunnlaugsson, Luminescent Self-Assembly Formation on a Gold Surface Observed by Reversible 'Off-on' Switching of Eu(III) Emission, Chem. Commun, pp.4959-4961, 2009.

J. Lehr, J. Bennett, M. Tropiano, T. J. Sørensen, S. Faulkner et al., Reversible Recruitment and Emission of DO3a-Derived Lanthanide Complexes at Ligating Molecular Films on Gold, Langmuir, vol.29, pp.1475-1482, 2013.

J. Lehr, M. Tropiano, P. D. Beer, S. Faulkner, and J. J. Davis, Reversible Redox Modulation of a Lanthanide Emissive Molecular Film, Chem. Commun, vol.51, pp.6515-6517, 2015.

W. B. Mefteh, H. Touzi, F. Bessueille, Y. Chevalier, R. Kalfat et al., An Impedimetric Sensor Based on a Gold Electrode Functionalized with a Thiol Self-Assembled Monolayer Modified by Terpyridine Ligands for the Detection of Free Gadolinium Ions, Electroanalysis, vol.27, pp.84-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01119623

S. Comby and T. Gunnlaugsson, Luminescent Lanthanide-Functionalized Gold Nanoparticles: Exploiting the Interaction with Bovine Serum Albumin for Potential Sensing Applications, ACS Nano, vol.5, pp.7184-7197, 2011.

D. J. Lewis, T. M. Day, J. V. Macpherson, Z. Pikramenou, and . Luminescent-nanobeads, Attachment of Surface Reactive Eu(Iii) Complexes to Gold Nanoparticles, Chem. Commun, pp.1433-1435, 2006.

L. K. Truman, S. Comby, and T. Gunnlaugsson, Ph-Responsive Luminescent Lanthanide-Functionalized Gold Nanoparticles with "on-Off" Ytterbium Switchable near-Infrared Emission, Angew. Chem. Int. Ed, vol.51, pp.9624-9627, 2012.

L. Norel, E. Di-piazza, M. Feng, A. Vacher, X. He et al., Lanthanide Sensitization with Ruthenium Carbon-Rich Complexes and Redox Commutation of near-IR Luminescence, Organomet, vol.33, pp.4824-4835, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01151676

D. Piazza, E. Norel, L. Costuas, K. Bourdolle, A. Maury et al., d?f Heterobimetallic Association between Ytterbium and Ruthenium Carbon-Rich Complexes: Redox Commutation of near-IR Luminescence, J. Am. Chem. Soc, vol.133, pp.6174-6176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00860780

L. Luo, A. Benameur, P. Brignou, S. H. Choi, S. Rigaut et al., Length and Temperature Dependent Conduction of Ruthenium-Containing Redox-Active Molecular Wires, J. Phys. Chem. C, vol.115, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00874709

L. Norel, M. Feng, K. Bernot, T. Roisnel, T. Guizouarn et al., Redox Modulation of Magnetic Slow Relaxation in a 4f-Based Single-Molecule Magnet with a 4d Carbon-Rich Ligand, Inorg. Chem, vol.53, pp.2361-2363, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00973431

Y. Liu, C. M. Ndiaye, C. Lagrost, K. Costuas, S. Choua et al., Diarylethene-Containing Carbon-Rich Ruthenium Organometallics: Tuning of Electrochromism, Inorg. Chem, vol.53, pp.8172-8188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092872

M. Murai, M. Sugimoto, and M. Akita, Zinc-Porphyrins Functionalized with Redox-Active Metal Peripherals: Enhancement of D?-P? Interaction Leading to Unique Assembly and Redox-Triggered Remote Switching of Fluorescence, Dalton Trans, vol.42, pp.16108-16120, 2013.

A. Mulas, Y. Hervault, X. He, E. Di-piazza, L. Norel et al., Fast Electron Transfer Exchange at Self-Assembled Monolayers of Organometallic Ruthenium(II) ?-Arylacetylide Complexes, Langmuir, vol.31, pp.7138-7147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169304

X. He, C. Lagrost, L. Norel, and S. Rigaut, Ruthenium(II) ?-Arylacetylide Complexes as Redox Active Units for (Multi-)Functional Molecular Devices, Polyhedron, vol.140, pp.169-180, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737371

G. Grelaud, N. Gauthier, Y. Luo, F. Paul, B. Fabre et al., Redox-Active Molecular Wires Derived from Dinuclear Ferrocenyl/Ruthenium(II) Alkynyl Complexes: Covalent Attachment to Hydrogen-Terminated Silicon Surfaces, J. Phys. Chem. C, vol.118, pp.3680-3695, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01151705

J. C. Hoogvliet, M. Dijksma, B. Kamp, and W. P. Van-bennekom, Electrochemical Pretreatment of Polycrystalline Gold Electrodes to Produce a Reproducible Surface Roughness for Self-Assembly: A Study in Phosphate Buffer pH 7.4, Anal. Chem, vol.72, pp.2016-2021, 2000.

D. A. Rand and R. Woods, The Nature of Adsorbed Oxygen on Rhodium, Palladium and Gold Electrodes, J. Electroanal. Chem, vol.31, pp.29-38, 1971.

G. Valette, Hydrophilicity of Metal Surfaces: Silver, Gold and Copper Electrodes, J. Electroanal. Chem, vol.139, pp.285-301, 1982.

H. C. Yang, K. Aoki, H. G. Hong, D. D. Sackett, M. F. Arendt et al., Growth and Characterization of Metal(II) Alkanebisphosphonate Multilayer Thin Films on Gold Surfaces, J. Am. Chem. Soc, vol.115, pp.11855-11862, 1993.

C. Amatore, O. Klymenko, and I. Svir, A New Strategy for Simulation of Electrochemical Mechanisms Involving Acute Reaction Fronts in Solution: Application to Model Mechanisms, Electrochem. Commun, vol.12, pp.1165-1169, 2010.

V. Grosshenny, F. M. Romero, and R. Ziessel, Construction of Preorganized Polytopic Ligands Via Palladium-Promoted Cross-Coupling Reactions, J. Org. Chem, vol.62, pp.1491-1500, 1997.

A. Benameur, P. Brignou, E. Di-piazza, Y. Hervault, L. Norel et al., Redox-Active Ruthenium(II) ?-Arylacetylide Wires for Molecular Electronics Incorporating Insulating Chains, New J. Chem, vol.35, pp.2105-2113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00874700

A. Mulas, Y. Hervault, L. Norel, S. Rigaut, and C. Lagrost, Electron-Transfer Kinetics in Polymetallic Carbon-Rich Ruthenium(II) Bis(??Arylacetylides) Wires Connected to Gold, vol.2, pp.1799-1805, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01188235