P. Thune and A. Granholt, Provocation tests with antiphlogistica and food additives in recurrent urticarial, Dermatologica, vol.151, pp.360-367, 1975.

S. L. Shari, F. Jr, and J. F. , Contact anaphylaxis: a review, American Journal of Contact Dermatitis, vol.6, pp.133-142, 1995.

L. Koutsogeorgopoulou, C. Maravelias, G. Methenitou, and A. Koutselinis, Immunological aspects of the common food colorants, amaranth and tartrazine, Veterinary and Human Toxicology, vol.40, pp.1-4, 1998.

A. Yadav, A. Kumar, P. D. Dwivedi, A. Tripathi, and M. Das, In vitro studies on immunotoxic potential of orange II in splenocytes, Toxicology Letters, vol.208, pp.239-245, 2012.

G. P. Srivinivasan, A. Sikkanthar, A. Elamaran, K. Delma, C. R. Subramaniyam et al., Biodegradation of carcinogetic textile azo dye using bacterial isolates of mangrove sediment, J. Coast. Life Med, vol.2, pp.154-162, 2014.

L. E. Arnold, N. Lofthouse, and E. Hurt, Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for, Neurotherapeutics, vol.9, pp.599-609, 2012.

, Reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110), EFSA Journal

N. E. Llamas, M. Garrido, D. Nezio, M. S. Band, and B. , Second order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV-vis and multivariate curve resolution-alternating least squares, Anal. Chim. Acta, vol.655, pp.38-42, 2009.

Y. Yuan, X. Zhao, M. Qiao, J. Zhu, S. Liu et al., Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dot, Spectrochim. Acta A, vol.167, pp.106-110, 2016.

K. Zeynali and S. Manafi-khoshmanesh, Simultaneous spectrophotometric determination of sunset yellow and quinoline yellow in a single step, J. Chin. Chem. Soc, vol.62, pp.772-781, 2015.

Y. Zhu, L. Zhang, and L. Yang, Designing of the functional paper-based surface-enhanced raman spectroscopy substrates for colorants detection, Mater. Res. Bull, vol.63, pp.199-204, 2015.

S. P. Alves, D. M. Brum, and É. C. Branco-de-andrade, Pereira Netto AD, Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection, Food Chem, vol.107, pp.489-496, 2008.

O. Sha, X. Zhu, Y. Feng, and W. Ma, Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography, J. Anal. Meth. Chem, 2014.

D. Branch and M. Sciences, Sunset yellow, tartrazine and sodium benzoate in orange juice distributed in Iranian market and subsequent exposure assessment, Inter. Food. Res. J, vol.25, pp.975-981, 2018.

H. Alp, D. Bas, A. Yas, N. Yayl?, and M. Ocak, Simultaneous Determination of Sunset Yellow FCF, Allura Red AC, Quinoline Yellow WS, and Tartrazine in Food Samples by RP-HPLC, Journal of Chemistry, 2018.

T. Zou, P. He, A. Yasen, and Z. Li, Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors, Food Chem, vol.138, pp.1742-1750, 2013.

X. Niu, M. Lan, H. Zhao, and C. Chen, Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures, Anal. Chem, vol.85, pp.3561-3570, 2013.

N. Moghimi and K. T. Leung, FePt Alloy Nanoparticles for Biosensing: Enhancement of Vitamin C Sensor Performance and Selectivity by Nanoalloying, Anal. Chem, vol.85, pp.5974-5980, 2013.

N. Vladislav, M. Buzuk, I. ?. Ron?evi?, and S. Brini?, Electroanalytical Methods for Determination of Sunset Yellow -a Review, Int. J. Electrochem. Sci, vol.13, pp.7008-7019, 2018.

K. Zhang, P. Luo, J. Wu, W. Wang, and B. Ye, Highly sensitive determination of Sunset Yellow in drink using a poly (lcysteine) modified glassy carbon electrode, Anal. Methods, vol.5, pp.5044-5050, 2013.

M. Wang, Q. Sun, Y. Gao, X. Yang, and J. Zhao, Determination of Sunset yellow in foods based on a facile electrochemical sensor, Anal. Methods, vol.6, pp.8760-8766, 2014.

A. Królicka, A. Bobrowski, J. Zareogonekbski, and I. Tesarowicz, Bismuth film electrodes for adsorptive stripping voltammetric determination of sunset yellow FCF in soft drinks, Electroanalysis, vol.26, pp.756-765, 2014.

Y. Songyang, X. Yang, S. Xie, H. Hao, and J. Song, Highlysensitive and rapid determination of sunset yellow using functionalized montmorillonite-modified electrode, Food Chem, vol.173, pp.640-644, 2015.

Y. Ya, C. Jiang, T. Li, J. Liao, Y. Fan et al., A zinc oxide nanoflower-based electrochemical sensor for trace detection of sunset yellow, Sensors, vol.17, pp.1-9, 2017.

B. Perez-lopez and A. Merkoc, Nanomaterials based biosensors for food analysis applications, Trends Food Sci. Technol, vol.22, pp.625-639, 2011.

J. Marty, A. Vasilescu, A. Hayat, and S. Ga, Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis, Electroanalysis, vol.30, pp.2-19, 2018.

G. K. Mishra, A. Barfidokht, F. Tehrani, and R. K. Mishra, Food Safety Analysis Using Electrochemical Biosensors, Foods, vol.7, pp.141-151, 2018.

G. Maduraiveeran and J. W. , Nanomaterials based electrochemical sensor and biosensor platforms for in Environmental Anal, Chem, vol.13, pp.10-23, 2017.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay et al., Graphene based electrochemical sensors and biosensors: A review, Electroanalysis, vol.22, pp.1027-1036, 2010.

S. J. Rowley-neale, E. P. Randviir, A. Dena, A. S. Banks, and C. E. , An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Appl. Mater. Today, vol.10, pp.218-226, 2018.

Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun, vol.11, pp.889-892, 2009.

K. F. Chan, H. N. Lim, N. Shams, S. Jayabal, A. Pandikumar et al., Fabrication of graphene/gold-modified screenprinted electrode for detection of carcinoembryonic antigen, Mater. Sci. Eng. C, vol.58, pp.666-674, 2016.

M. Pumera, A. A. Bonanni, A. Chng, E. Poh, and H. L. , Graphene for electrochemical sensing and biosensing, TrAC -Trends Anal. Chem, vol.29, pp.954-965, 2010.

M. Wang and J. Zhao, Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of Sunset yellow and Tartrazine in drinks, Sensors Actuators B Chem, vol.216, pp.578-585, 2015.

Y. Zhang, X. X. Sun, Y. Shi, Y. Dai, H. Ni et al., Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing, Electroanalysis, vol.25, pp.959-966, 2013.

. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren et al., Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films, Chem. -A Eur, J, vol.15, pp.6116-6120, 2009.

Y. Shao, J. Wang, M. Engelhard, C. Wang, and Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications, J. Mater. Chem, vol.20, pp.743-751, 2010.

H. Guo, X. Wang, Q. Qian, F. Wang, and X. Xia, A Green Approach to the Synthesis of graphene nanosheet, ACS Nano, vol.3, pp.2653-2662, 2009.

D. Báez, H. Pardo, I. Laborda, J. Marco, C. Yáñez et al., Reduced Graphene Oxides: Influence of the Reduction Method on the Electrocatalytic Effect towards Nucleic Acid Oxidation, Nanomaterials, vol.7, pp.168-182, 2017.

C. Wang, J. Du, H. Wang, C. Zou, F. Jiang et al., A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B Chem, vol.203, pp.302-311, 2014.

L. Chen, Y. Tang, K. Wang, C. Liu, and S. Luo, Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application, Electrochem. Commun, vol.13, pp.133-140, 2011.

E. Asadian, S. Shahrokhian, I. Zad, A. Ghorbani-bidkorbeh, and F. , Glassy carbon electrode modified with 3D graphene-carbon nanotube network for sensitive electrochemical determination of methotrexate, Sens. Actuators B Chem, vol.239, pp.617-627, 2017.

Y. Zhang, M. Zhang, Q. Wei, Y. Gao, L. Guo et al., An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine, Sensors, vol.16, pp.535-548, 2016.

Z. Xue, B. Yin, M. Li, H. Rao, H. Wang et al., Direct electrodeposition of well dispersed electrochemical reduction graphene oxide assembled with nickel oxide nanocomposite and its improved electrocatalytic activity toward 2, 4, 6-Trinitrophenol, Electrochim. Acta, vol.192, pp.512-520, 2016.

B. Yang, H. Wang, J. Du, Y. Fu, P. Yang et al., Direct electrodeposition of reduced graphene oxide on carbon fiber electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Colloids Surf. A Physicochem. Eng. Asp, vol.456, pp.146-152, 2014.

C. S. Lee, S. Yu, and T. Kim, One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Nanomaterials, vol.8, pp.17-19, 2017.

J. Yang, J. H. Yu, R. Strickler, J. Chang, W. J. Gunasekaran et al., Nickel nanoparticle-chitosan-reduced graphene oxidemodified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices, Biosens. Bioelectron, vol.47, pp.530-538, 2013.

T. Gan, J. Sun, Q. Wu, Q. Jing, and S. Yu, Graphene decorated with nickel nanoparticles as a sensitive substrate for simultaneous determination of sunset yellow and tartrazine in food samples, Electroanalysis, vol.25, pp.1505-1512, 2013.

T. Gan, J. Sun, S. Cao, F. Gao, Y. Zhang et al., One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine, Electrochim. Acta, vol.74, pp.151-158, 2012.

J. Wang, B. Yang, H. Wang, P. Yang, and Y. Du, Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode, Anal. Chim. Acta, vol.893, pp.41-49, 2015.

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun et al., Improved Synthesis of Graphene Oxide, ACS Nano, vol.4, pp.183-191, 2010.

H. Yu, B. Zha, B. Chaoke, R. Li, and R. Xing, High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method, Sci. Rep, vol.6, pp.1-7, 2016.

M. R. Majidi, R. Fadakar, and B. Baj, Carbon Nanotube -Ionic Liquid (CNT-IL ) Nanocamposite Modified Sol-Gel Derived Carbon-Ceramic Electrode for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples, Food Anal. Methods, vol.6, pp.1388-1393, 2013.

J. Wang, Y. B. Zhang, K. Bin, D. Shiraishi, Y. Yang et al., Highly sensitive electrochemical determination of sunset yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites, J. Colloid Interface Sci, vol.481, pp.229-235, 2016.

L. Li, H. Zheng, L. Guo, L. Qu, and L. Yu, Construction of novel electrochemical sensors based on bimetallic nanoparticle functionalized graphene for determination of sunset yellow in soft drink, J. Electroanal. Chem, vol.833, pp.393-400, 2019.

K. Deng, C. Li, X. Li, and H. Huang, Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide, J. Electroanal. Chem, vol.780, pp.296-302, 2016.

F. Pogacean, M. Coros, V. Mirel, and . Magerusan, Barbu-Tudoran L, Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions : application to sunset yellow voltammetric detection, Microchem. J, vol.147, pp.112-120, 2019.

E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems, J. Electronal. Chem, vol.101, pp.19-28, 1979.

P. Sierra-rosales, C. Berríos, and J. A. Squella, Experimental and theoretical insights into the electrooxidation pathway of azo-colorants on glassy carbon electrode, Electrochim. Acta, vol.290, pp.556-567, 2018.

A. Shrivastava and V. B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chronides of young scientists, vol.2, pp.21-26, 2011.

M. Y. Chao and X. Y. Ma, Convenient electrochemical determination of Sunset Yellow and tartrazine in food samples using a poly(L-phenylalanine)-modified glassy carbon electrode, Food Anal. Methods, vol.8, pp.130-138, 2015.

W. Zhang, T. Liu, X. Zheng, W. Huang, and C. Wan, Surfaceenhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes filmmodified electrode, Colloids Surf. B Biointerfaces, vol.74, pp.28-31, 2009.

L. Yu, M. Shi, X. Yue, and L. Qu, A novel and sensitive hexadecyltrimethyl ammonium bromide functionalized graphene supported platinum nanoparticles composite modified glassy carbon electrode for determination of sunset yellow in soft drinks, Sens. Actuators, B Chem, vol.209, pp.1-8, 2015.

L. Maguresan, F. Pogacean, M. Coros, C. Socaci, S. Pruneanu et al., Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection, Electrochim. Acta, vol.283, pp.578-589, 2018.

S. Jampasa, W. Siangproh, K. Duangmal, and O. Chailapakul, Electrochemically reduced graphene oxide-modified screenprinted carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages, Talanta, vol.160, pp.113-124, 2016.

T. Gan, J. Sun, W. Meng, L. Song, and Y. Zhang, Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colorants in food, Food Chem, vol.141, pp.3731-3738, 2013.