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Abstract. Human anterior gradient proteins AGR2 and AGR3 
are overexpressed in a variety of adenocarcinomas and are 
often secreted in cancer patients' specimens, which suggests a 
role for AGR proteins in intra and extracellular compartments. 
Although these proteins exhibit high sequence homology, 
AGR2 is predominantly described as a pro‑oncogene and a 
potential prognostic biomarker. However, little is known about 
the function of AGR3. Therefore, the aim of the present study 
was to investigate the role of AGR3 in breast cancer. The 
results demonstrated that breast cancer cells secrete AGR3. 
Furthermore, it was revealed that extracellular AGR3 (eAGR3) 
regulates tumor cell adhesion and migration. The current study 
indicated that the pharmacological and genetic perturbation 
of Src kinase signaling, through treatment with Dasatinib 
(protein kinase inhibitor) or investigating cells that express 
a dominant‑negative form of Src, significantly abrogated 
eAGR3‑mediated breast cancer cell migration. Therefore, the 
results indicated that eAGR3 may control tumor cell migration 
via activation of Src kinases. The results of the present study 

indicated that eAGR3 may serve as a microenvironmental 
signaling molecule in tumor‑associated processes.

Introduction

Anterior gradient protein 3 (AGR3) is a homologue of the 
pro‑oncogenic AGR2. AGR3 and AGR2 share a 71% sequence 
identity and lie adjacent to one another at chromosomal posi-
tion 7p21 (1). Functionally, they belong to the protein disulfide 
isomerases (PDIs) family, which act as endoplasmic reticulum 
(ER)‑resident molecular foldases involved in the maintenance 
of cellular homeostasis. AGR2 is part of the protein folding 
machinery within the ER, it is regulated by the ER stress 
response (2,3) and it is known to be involved in mucin produc-
tion in intestinal, pulmonary and pancreatic tissues  (4‑6). 
Similarly, AGR3 is also an ER resident protein, which is 
required for the regulation of ciliary beat frequency and muco-
ciliary clearance in the airway epithelium (7). Deregulation 
of AGR2 and AGR3 proteins expression has been associated 
with several clinical entities, including cancer. We and others 
have shown similar expression patterns of AGR2 and AGR3 in 
non‑pathological tissue samples as well as carcinomatous ones, 
including that of breast, liver and ovary (8‑11), which suggests 
their cognate physiological function and role in pathology. 
Numerous studies have linked AGR2 with pro‑tumoral char-
acteristics that promote cancer aggressiveness and pertain 
to poor prognoses  (12‑15). Although AGR2 and AGR3 
harbor an ER retention signal sequence (KTEL and QSEL, 
respectively), they were present in extracellular media such as 
gastrointestinal mucus, blood or urine (16‑19). Intriguingly, 
we and others have recently demonstrated an emerging role 
of AGR2 in the maintenance of the tumor microenvironment 
[including properties of cancer migration (20), invasion (21), 
chemoresistance (22) and epithelial‑to‑mesenchymal transi-
tion (EMT) (23)], which clearly indicates that extracellular 
AGR2 (eAGR2) protein assumes a gain‑of‑function role. 
AGR3 is a less characterized homologue of AGR2, with 
similar but apparently not identical function in the regulation 
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of tumor‑associated processes (11). So far, AGR3 was shown 
to interact with dystroglycan‑1 (DAG‑1) and metastasis‑asso-
ciated C4.4A protein (1), indicating its potential as a driver of 
metastasis. Moreover, AGR3 mediates cisplatin resistance in 
xenograft models of ovarian cancer (8). These findings collec-
tively make AGR3 a potential promising target for anti‑tumor 
therapy. Elevated AGR3 expression levels were reported in 
some cancer types, including breast (19,24,25), liver (9), pros-
tate (26) and ovary (8,27). However, the precise role of AGR3 
in tumorigenesis has not been investigated so far. AGR3 was 
identified among a set of breast cancer‑associated membrane 
proteins (24) and later its presence was reported in sera from 
breast cancer patients  (19). Therefore, in the present work 
we aim to investigate whether extracellular AGR3 (eAGR3) 
could have a gain‑of‑function within the extracellular space to 
promote cancer aggressiveness.

Materials and methods

Cell lines and culture reagents. Human breast carcinoma 
cell lines MCF‑7, T‑47D, BT‑474, SK‑BR‑3 and BT‑549 
were purchased from American Type Culture Collection 
(ATCC). All cells were maintained in high glucose Dulbecco's 
Modified Eagle's medium (DMEM), supplemented with 10% 
fetal bovine serum (FBS) and 300  µg/ml L‑glutamine at 
37˚C in humidified atmosphere with 5% CO2. Dasatinib was 
obtained from Selleckchem, 7‑amino‑actinomycin D (7‑AAD) 
and Annexin V‑PE were from BD Biosciences. To inhibit EsR 
signaling, 10 nM 17β‑estradiol, 1 µM tamoxifen and 0.5 nM 
fulvetrant (all from Sigma‑Aldrich) were used for 24 h.

Purification of recombinant AGR3 protein. The sequence 
coding for mature AGR3 (NP_789783, amino acids 22‑166) 
was cloned into a vector containing N‑terminal His6‑GST 
tag, cleavable by tobacco etch virus (TEV) protease. 
Recombinant fusion protein His6‑GST‑AGR3 was produced 
in BL21‑CodonPlus (DE3)‑RIPL cells (Agilent) according to 
a protocol described previously (28) with some minor modi-
fications. In order to exclude the potential impact of bacterial 
endotoxins on cellular signaling  (29), purified glutathione 
S‑transferase (His6‑GST) protein served as a control in all 
the experiments. Briefly, cells were lysed in buffer containing 
50 mM HEPES pH 7.4, 150 mM NaCl, 1 mM PMSF, 1 mg/ml 
lysozyme. His6‑GST‑AGR3 fusion protein was captured on a 
GSTrap glutathione‑agarose column (GE Healthcare), eluted 
with 20  mM glutathione and subjected to TEV protease 
cleavage. To remove His6‑GST and His6‑TEV, proteins were 
applied to HisTrap column (GE Healthcare). The purity and 
appropriate size of AGR3 protein was analyzed by Coomassie 
blue staining of 10% SDS‑PAGE gels (data not shown). For all 
experiments, purified recombinant AGR3 protein was diluted 
in DMEM + 10% FBS to a final concentration of 5 ng/ml or 
50 ng/ml followed by media filtration.

Collection of conditioned media and western blot analysis. 
For detection of secreted AGR3, conditioned media were 
collected after 48 h of cell culture in serum‑free DMEM, 
centrifuged at 13,000 rpm for 10 min, followed by overnight 
precipitated with cold acetone (at 80% final concentration). 
For cellular proteins detection, cells were lysed in lysis buffer 

(50 mM TrisHCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 50 mM 
NaF, 1 mM Na3CO4, 1% Nonidet P40) containing protease 
inhibitor cocktail and phosphatase inhibitor cocktail 2 (both 
Sigma‑Aldrich). For detection of tyrosine‑phosphorylated 
proteins, the aforementioned lysis buffer was supplemented 
with 100 µM sodium orthovanadate (Sigma). The primary 
antibodies used were as follows: Mouse monoclonal 
anti‑tubulin (Sigma), goat monoclonal anti‑actin (Santa Cruz 
Biotechnology), mouse monoclonal anti‑GAPDH (Santa Cruz 
Biotechnology), in‑house mouse monoclonal anti‑AGR3 (8,25), 
Py‑Plus™‑HRP mouse anti‑phosphotyrosine (Invitrogen), 
rabbit monoclonal anti‑c‑Src and anti‑phospho‑c‑Src (both 
Cell Signaling Technology), mouse monoclonal anti‑Gapdh 
(clone 6C5) (Millipore), mouse monoclonal anti‑VCP (p97) 
(BD Biosciences) and rabbit monoclonal anti‑EsRalpha anti-
body (Abcam).

Cell detachment assay. Confluent cells were seeded in the 
quadruplet on 24‑well plates and were incubated with 5 ng/ml 
and 50 ng/ml eAGR3 protein for 24 h. After, cells were washed 
with 0.5% EGTA and trypsin was used to detach cells from 
plate surface (for MCF‑7, 0.0025% trypsin for 3 min; for 
T‑47D, 0.125% trypsin for 3 min). The remaining cells were 
washed with PBS, fixed with 4% paraformaldehyde in PBS 
and stained with 5 mg/ml crystal violet. Number of attached 
cells was quantified by absorbance measurement on the micro-
plate reader (Tecan Group Ltd.) at 595 nm.

Wound healing assay. Confluent cells were scraped using 
a sterile micropipette tip to create an in  vitro wound and 
subsequently incubated in serum‑free DMEM with or without 
eAGR3 as indicated. For SRC family kinases inhibition, cells 
were additionally treated with 1 µM dasatinib or equivalent 
concentration of DMSO as control. Alternatively, cells were 
transfected with wild‑type or dominant negative (K298R) 
Src constructs  (30) to further document the impact of Src 
signaling on eAGR3‑induced migration. Transient transfec-
tions of MCF‑7 cells seeded in 12‑well plates (at a density of 
4x105 cells/well) were performed using Fugene 6 (Promega) 
according to the manufacturer's recommendations using a 
1:3 ratio of DNA/Fugene 6 in Opti‑MEM (Invitrogen Life 
Technologies). Time‑lapse acquisition of the wound closure was 
analyzed with Nikon eclipse Ti‑E system at 10x magnification. 
The pictures were captured in three randomly chosen fields 
within the wounded region every 20 min for 24 h. The migration 
rate was assessed using TScratch software (31) (CSE Lab, ETH) 
by quantification of the cell‑free area 16 h post‑scratching.

Flow cytometry. Cells were treated with tyrosine kinase 
inhibitor dasatinib ranging from 10  to  0.01  µM for 24  h. 
Following treatment, cells were washed with PBS 2% FBS 
and analyzed by flow cytometry using a FACS‑Canto II flow 
cytometer (BD Biosciences). The population of interest was 
gated according to its FSC/SSC criteria. The dead cell popula-
tion was determined using 7‑amino‑actinomycin D (7AAD) 
and annexin V‑PE staining (both BD Biosciences). Data were 
analyzed with the FACS‑Diva (BD Biosciences).

Statistical analyses. Graphs and statistical analyses were 
done using GraphPad Prism 7.0  software. According to 
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the experiments, either a student t‑test was applied using a 
two‑tailed distribution of two conditions of unequal or equal 
variances on groups of data obtained in experiments, or an 
ANOVA following a Tukey's multiple comparisons test was 
used. P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

AGR3 is secreted from breast cancer cells. To test whether 
AGR3 protein could be found both intracellularly (iAGR3) 
and extracellularly (eAGR3), we first monitored AGR3 
expression levels in cell extracts and in the conditioned 
media of a set of distinct breast cancer cell lines including 
MCF‑7, T‑47D, BT‑474, SK‑BR‑3 and BT‑549. We found 
that iAGR3 protein is expressed only in MCF‑7 and T‑47D 
cells (Fig. 1A) and is secreted (eAGR3) in the extracellular 
milieu by these two cell lines (Fig. 1A‑B). We also evaluated 
the relative concentration of eAGR3 using Western blotting. 

This was done by comparing the intensity of the immuno-
reactive bands obtained from purified recombinant AGR3 
protein ranging from 50 to 0.05 ng/ml (herein referred to as 
eAGR3) to that of eAGR3 acetone‑precipitated from MCF‑7 
and T‑47D conditioned culture media. We found that in vitro 
breast cancer cells secrete eAGR3 in nanomolar quantities 
(Fig.  1B). Therefore, to investigate the biological conse-
quences of eAGR3 secretion, we further used recombinant 
AGR3 protein at the concentration of 5 and 50 ng/ml.As 
demonstrated here, AGR3 is only expressed in estrogen 
receptor (EsR) positive breast cancer cell lines, which is 
in line with previous works showing the positive corre-
lation between AGR3 and EsR status in breast tumor 
tissues (1,19,25). As such, we investigated the effect of EsR 
signaling attenuation on AGR3 expression using the EsR 
ligands, namely 17β‑estradiol, tamoxifen and fulvestrant. As 
a result, we found that none of the used drugs affected intra‑ 
or eAGR3  expression in both cell lines tested, indicating that 
the EsR pathway does not control AGR3 secretion (Fig. 1C).

Figure 1. eAGR3 promotes breast cancer cell migration and adhesion. (A) Western blot analysis showing intracellular AGR3 expression in a panel of breast 
cancer cell lines and relative quantification of its expression compared with recombinant protein (AGR3). Actin was used as loading control. (B) Western blot 
analysis showing AGR3 protein secretion in MCF‑7 and T‑47D cells. GAPDH was used as loading control. (C) Effect of EsRα inhibition on intra‑ and eAGR3 
expression as determined using western blot analysis. Actin was used as loading control. (D) Wound healing assay demonstrating migration properties of 
MCF‑7 and T‑47D cells exposed to eAGR3. Relative migration was quantified by measuring the in vitro wound area 16 h post scraping. Data are presented as 
a fold change in the migration rate between control (‑eAGR3) and AGR3‑stimulated cells (+eAGR3). Columns, means of two independent experiments; bars, 
SEM (E) Cell detachment assay showing increased adhesion of MCF‑7 and T‑47D cells cultivated in the presence of recombinant eAGR3. Data are presented 
as relative adhesion to untreated cells (unexposed to the effect of trypsin) between control and eAGR3‑stimulated cells. Columns, means of two independent 
experiments; bars, SEM, *P≤0.05, **P≤0.01 and ****P≤0.0001 vs. ‑eAGR3. AGR3, anterior gradient 3; EsRα, estrogen receptor α; eAGR3, extracellular anterior 
gradient protein 3.
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eAGR3 regulates tumor migration and adhesion. Given that 
the only report pertaining to AGR3 function in cancer links 
AGR3 with metastasis (1), we investigated whether eAGR3 
could regulate cancer cell migration and/or adhesion, one of 
the key steps required for tumor cell metastasis. Firstly, we 
studied the effect of eAGR3 on cell migration using a wound 
healing assay and found a significant increase in migratory 
properties of both MCF‑7 and T‑47D upon eAGR3 exposure 
(5 ng/ml; Fig. 1D). Next, we determined the effect of eAGR3 
on cell adhesion using a cell detachment assay. To this end, 
MCF‑7 and T‑47D cells were compared for their ability to 
bind to plastic substratum upon treatment with eAGR3. Both 
MCF‑7 and T‑47D cells exposed to low concentrations of 
trypsin were more prone to stay attached to the substratum 
when cultivated in the presence of eAGR3 (Fig. 1E). These 
results demonstrate that eAGR3 plays an extracellular role 
in regulating, tumor‑associated processes, cell‑adhesion and 
migration in breast cancer cells.

eAGR3 supports cell migration by inducing the phosphory‑
lation of tyrosine kinases. To investigate the intracellular 
signaling mechanism(s) responsible for eAGR3‑dependent 
migration, we then analyzed protein tyrosine phosphorylation 
patterns in control MCF‑7 cells and cells treated with 5 ng/ml 
eAGR3 using Western blot with anti‑phosphotyrosine anti-
bodies. To enhance the detection of tyrosine‑phosphorylated 
proteins, cells were also treated with 15 µM bpV(phen), an 
inhibitor of protein phosphotyrosine phosphatases. As shown 
in Fig. 2, we detected an increase in tyrosine phosphorylation 
corresponding to proteins with molecular weight of about 65, 
80 and 100 kDa. This observation suggested that eAGR3 
might induce the tyrosine phosphorylation of a major protein 
of a molecular weight compatible with the Src family kinases, 
key actors in cell migration (32). Thus, this result indicated 

that eAGR3 might possibly act through Src signaling to 
control cell migration. This hypothesis was further supported 
by a study showing that AGR2, a pro‑tumorigenic homologue 
of AGR3, impacts on Src signaling, since AGR2 silencing in 
breast cancer cells resulted in decreased c‑Src phosphoryla-
tion with no impact on total c‑Src levels (33). 

eAGR3 acts through the c‑Src signaling pathways. Therefore, 
to confirm our observation, dasatininb, a tyrosine kinase 
inhibitor targeting Src kinases, was used and cell migration 
upon treatment with eAGR3 was analyzed using wound 
healing assays. Before the analysis, the toxicity of gradient 
dasatinib concentrations randing from 10  to  0.01  µM 
was measured by flow cytometry using Annexin V and 
7‑amino‑actinomycin D (7‑AAD) double staining, which 
confirmed that dasatinib alone does not affect cell survival at 
any tested concentrations (Fig. 3A). We then investigated the 
migration rate of T‑47D cells stimulated or not with eAGR3 
(from 0.5 to 50 ng/ml) and treated or not with 1 µM dasatinib. 
Cell migration was significantly downregulated upon dasat-
inib treatment in both control and eAGR3‑stimulated cells 
(Fig. 3B). Western blot analysis also revealed the induction 
of Src phosphorylation in MCF‑7 cells following exposure to 
eAGR3, which was consistently blocked in dasatinib‑treated 
cells (Fig. 3C). This result confirmed our initial hypothesis 
that eAGR3 could signal through Src to promote cell migra-
tion.

To further demonstrate that eAGR3 exerts its pro‑migratory 
functions on breast cancer cells by activating c‑Src signaling, 
we investigated the effect of eAGR3 on MCF‑7 cells over-
expressing wild‑type (WT) or dominant negative mutant of 
c‑Src protein, namely K298R (Fig. 4A) (34). We found that 
control (Mock, empty vector) and c‑Src WT‑overexpressing 
cells migrated significantly faster towards in vitro wound 

Figure 2. eAGR3 induces the expression of tyrosine phosphorylated proteins. (A) Western blot analysis of tyrosine phosphorylated proteins in MCF‑7 control 
cells and cells stimulated with eAGR3 (5 ng/ml) with or without bpV(phen) treatment. (B) Ponceau S staining of the SDS‑PAGE separated proteins prior to 
immunoblot with anti‑phosphotyrosine antibody serving as loading control. Arrows indicate the differentially tyrosine‑phosphorylated proteins between 
control and eAGR3‑treated cells. α; eAGR3, extracellular anterior gradient protein 3.
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upon treatment with eAGR3 compared to their non‑stimulated 
counterparts (Fig.  4B‑C,  E). Strikingly, cells transfected 
with plasmid coding for kinase dead K298R mutant did not 
respond to eAGR3 and consequently completely lost the 
migratory advantage of eAGR3 stimulation (Fig.  4D‑E). 
Taken together, these results demonstrate the involvement of 
c‑Src on breast cancer cell migration and support our previous 
observations that the kinase activity of c‑Src is necessary for 
eAGR3‑mediated tumorigenic properties.

Discussion

AGR2 and AGR3 proteins are highly expressed in breast 
tumors, where their expression levels correlate with 
estrogen receptor (EsR) positivity and predict patient 
outcome  (1,25,35,36). Accordingly, we found that AGR3 
was mainly expressed in the EsR‑positive cell lines (MCF‑7 
and T‑47D), while it was absent in EsR‑negative (SK‑BR‑3 
or BT‑549) cells, suggesting its EsR‑dependent regulation. 

Figure 3. Dasatinib reverses the effect of eAGR3 on cell migration. (A) Flow cytometry analysis showing the percentage of living cells upon treatment with 
decreasing concentrations of dasatinib. Populations of dead cells were quantified with annexin V and 7‑ADD staining. (B) Wound healing assay showing 
migration capacities of MCF‑7 and T‑47D cells exposed to eAGR3 and treated or not with 1 µM dasatinib. Migration rate was quantified by measuring the size 
of in vitro wound 16 h post scraping. Data are representative of four independent experiments, *P≤0.05. (C) Western blot analysis (upper panel) and quantifica-
tion (lower panel) showing induction in c‑Src phosphorylation in MCF‑7 cells stimulated with decreasing concentrations of eAGR3 and treated or not with 
1 µM dasatinib. p97 (VCP) was used as a loading control. ***P≤0.001. eAGR3, extracellular anterior gradient protein 3.
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However, the selective inhibition of EsRα did not affect 
intra‑ or eAGR3 levels, indicating a more complex regula-
tion of AGR3 expression in breast cancer, which is not solely 
dependent on EsR signaling. AGR2 is an emerging drug 
target in breast cancer as it promotes growth, survival and 
dissemination of the metastatic cells as well as resistance to 
treatment by modulating tumor‑associated signaling path-
ways and overcoming ER stress (14). In addition, AGR2 has 
been shown to be secreted by various cancer cell lines as well 
as in tumors tissues (17,18,37,38). Follow‑up studies indicated 
that AGR2 can also act ‘from the outside’, as eAGR2, either 
through binding to membrane receptors or through incorpo-
rating within the cytoplasm of target cells (21,22). Despite 
high similarity between the two homologues‑AGR2 and 
AGR3, there is no reported evidence of eAGR3 extracellular 
activity. Recent findings have demonstrated a significantly 
elevated level of eAGR3 in sera from breast cancer patients 
compared to healthy controls, which is of a diagnostic and 

prognostic importance (19). However, the biological conse-
quences of eAGR3 secretion remain elusive.

In the current study, we showed for the first time that 
eAGR3 exerts pro‑tumoral functions in breast cancer by 
impacting on the adhesive and migratory properties of breast 
cancer cells. These findings further support the hypothesis that 
AGR3 may be involved in metastatic processes either through 
a direct interaction with metastasis‑related proteins (such 
as C4.4A protein and DAG‑1 (1)) and/or by the induction of 
pro‑metastatic signaling pathways. In line with this, we previ-
ously demonstrated that the AGR3 gene may be co‑expressed 
with genes coding for claudin 3 and hepatocyte cell adhesion 
molecule (HEPACAM)  (11), both reported to regulate the 
metastatic potential of cancer cells (39,40). Herein we uncover 
that eAGR3 acts through the activation of c‑Src signaling 
pathway and that eAGR3‑dependent migration can be inhib-
ited by dasatinib and by dominant negative Src. In addition to 
EsR and progesterone receptor signaling (25), this is the first 

Figure 4. eAGR3 induces cell migration via the activation of c‑Src. (A) Western blot analysis showing the level of expression of c‑Src‑WT, c‑Src‑K298R, 
p‑c‑Src‑WT, p‑c‑Src‑K298R following transfection of MCF‑7 as compared to control cells (Mock, empty vector). Cells were stimulated (+) or not (‑) with 
eAGR3 (5 ng/ml). GAPDH was used as a loading control. (B‑D) Wound healing assay showing migration capacities of MCF‑7 cells transfected with empty 
vector (mock) (B), c‑Src‑wt (C) or c‑Src‑K298R (D), in absence or presence of eAGR3 (5 ng/ml) for 16 h. (E) Migration rate was quantified by measuring the 
size of in vitro wound 16 h post scraping. Data are representative of three independent experiments, *P≤0.05 and **P≤0.01 vs. ‑eAGR3. WT, wild‑type; eAGR3, 
extracellular anterior gradient protein 3; CTL, control.
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pro‑oncogenic pathway linked to the AGR3 protein. However, 
since dasatinib did not completely abolish the AGR3‑mediated 
increase in cell migration, it is plausible that collateral 
signaling pathways are involved in this process. Secreted 
AGR2 has been recently demonstrated to promote colorectal 
cancer migration and metastasis through non‑canonical Wnt 
signaling, involving Ca2+/Calmodulin‑dependent protein 
kinase  II (CaMKII) and JNK pathways  (20). However, 
whether this is true for extracellular eAGR3 warrants further 
investigation. Interestingly, the effect of eAGR3 does not seem 
to be dose‑dependent. This might be explained by the fact that 
high abundance of AGR3 protein might promote formations of 
homodimers, which, as we recently demonstrated for AGR2, 
are not secreted and therefore lack extracellular activity (41).

The mechanism of action of extracellular AGR proteins is in 
general poorly characterized and so far, it is not clear how their 
signal is transduced within the cells. In line with the existence 
of a cell surface receptor mediating extracellular AGR proteins 
signaling both AGR2 and AGR3 are human orthologues of the 
Xenopus laevis secreted XAG‑2 protein (1). XAG‑2 participates 
in frog embryogenesis and amphibian limb regeneration by inter-
acting with the Prod‑1 receptor of Ly6 superfamily (42). Although 
there is no human homologue of Prod‑1, AGR2 was shown to 
interact with another Ly6 receptor family member, C4.4A, which 
is a GPI‑anchored glycoprotein (22). Interestingly, blocking the 
binding of AGR2 to C4.4A reduced pancreatic tumor growth and 
metastasis in mice and improved mouse survival. This suggests 
that secreted AGR2, at least partially, exerts its pro‑tumorigenic 
functions in a receptor‑dependent manner. Given a scarce 
number of reports describing the role of AGR3 in cancer and its 
high homology with AGR2, we speculate that eAGR3 may act 
similarly to eAGR2 and therefore could directly bind to surface 
receptors thereby triggering the activation of the Src pathway. Our 
hypothesis is also reinforced by the reported link between AGR2 
expression and Src phosphorylation in breast cancer (33).

So far, the role of AGR3 in breast cancer biology has 
been ambiguous, since we and others have reported the 
opposite effect of elevated AGR3 expression on clinical 
outcomes (19,25). However, the present work points towards 
rather pro‑oncogenic properties of eAGR3 such as migration 
and adhesion. This is of particular importance, since AGR2 
and AGR3 are co‑expressed in breast cancer tissues (25), have 
been shown to be secreted in breast cancer (19) and as reported 
here, eAGR3 plays an extracellular function as a signaling 
molecule in the tumor microenvironment, as we previously 
described for eAGR2 (23). Therefore, our work highlights the 
importance of AGR3 function and its prognostic significance 
in breast cancer.
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