J. R. Molina, P. Yang, S. D. Cassivi, S. E. Schild, and A. A. Adjei, Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship, Mayo Clin. Proc, vol.83, pp.584-594, 2008.

X. Shi, T. Hong, K. L. Walter, M. Ewalt, E. Michishita et al., ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression, Nature, vol.442, pp.96-99, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02154247

P. V. Peña, F. Davrazou, X. Shi, K. L. Walter, V. V. Verkhusha et al., Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2, Nature, vol.442, pp.100-103, 2006.

Y. Doyon, C. Cayrou, M. Ullah, A. Landry, V. Côté et al., ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation, Mol. Cell, vol.21, pp.51-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02154286

L. A. Pile, P. T. Spellman, R. J. Katzenberger, and D. A. Wassarman, The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: Implications for the regulation of energy metabolism, J. Biol. Chem, vol.278, pp.37840-37848, 2003.

D. Larrieu, D. Ythier, R. Binet, C. Brambilla, E. Brambilla et al., Pedeux, R. ING2 controls the progression of DNA replication forks to maintain genome stability, EMBO Rep, vol.10, pp.1168-1174, 2009.

R. Pedeux, S. Sengupta, J. C. Shen, O. N. Demidov, S. Saito et al., ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation, Mol. Cell. Biol, vol.25, pp.6639-6648, 2005.

J. Wang, M. Y. Chin, and G. Li, The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation, Cancer Res, vol.66, 1906.

M. Saito, K. Kumamoto, A. I. Robles, I. Horikawa, B. Furusato et al., Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas, PLoS ONE, vol.5, 2010.

I. Garkavtsev, A. Kazarov, A. Gudkov, and K. Riabowol, Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation, Nat. Genet, vol.14, pp.415-420, 1996.

Y. Shimada, A. Saito, M. Suzuki, E. Takahashi, and M. Horie, Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor, Cytogenet. Cell Genet, vol.83, pp.232-235, 1998.

M. Nagashima, M. Shiseki, K. Miura, K. Hagiwara, S. P. Linke et al., DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53, Proc. Natl. Acad. Sci, vol.98, pp.9671-9676, 2001.

M. Nagashima, M. Shiseki, R. M. Pedeux, S. Okamura, M. Kitahama-shiseki et al., A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis, Oncogene, vol.22, pp.343-350, 2003.

M. Shiseki, M. Nagashima, R. M. Pedeux, M. Kitahama-shiseki, K. Miura et al., Cancer Res, vol.63, pp.2373-2378, 2003.

M. Unoki, K. Kumamoto, A. I. Robles, J. C. Shen, Z. Zheng et al., A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis, FEBS Lett, vol.582, pp.3868-3874, 2008.

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260, 1997.

K. Murray, The occurrence of epsilon-n-methyl lysine in histones, Biochemistry, vol.3, pp.10-15, 1964.

W. Fischle, H. Franz, S. A. Jacobs, C. D. Allis, and S. Khorasanizadeh, Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs, J. Biol. Chem, vol.283, 2008.

B. E. Bernstein, M. Kamal, K. Lindblad-toh, S. Bekiranov, D. K. Bailey et al., Genomic maps and comparative analysis of histone modifications in human and mouse, Cell, vol.120, pp.169-181, 2005.

H. Santos-rosa, R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein et al., Active genes are tri-methylated at K4 of histone H3, Nature, vol.419, pp.407-411, 2002.

O. Gozani, P. Karuman, D. R. Jones, D. Ivanov, J. Cha et al., The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor, Cell, vol.114, pp.99-111, 2003.

M. R. Kaadige and D. E. Ayer, The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding, J. Biol. Chem, vol.281, pp.28831-28836, 2006.

D. J. Bua, G. M. Martin, O. Binda, and O. Gozani, Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage, Sci. Rep, 2013.

C. Ohkouchi, K. Kumamoto, M. Saito, T. Ishigame, S. Suzuki et al., ING2, a tumor associated gene, enhances PAI-1 and HSPA1A expression with HDAC1 and mSin3A through the PHD domain and C-terminal, Mol. Med. Rep, vol.16, pp.7367-7374, 2017.

D. Ythier, D. Larrieu, R. Binet, O. Binda, C. Brambilla et al., Sumoylation of ING2 regulates the transcription mediated by Sin3A, Oncogene, vol.29, pp.5946-5956, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02345546

Y. Zhang, R. Iratni, H. Erdjument-bromage, P. Tempst, and D. Reinberg, Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex, Cell, vol.89, pp.357-364, 1997.

M. R. Parthun, J. Widom, and D. E. Gottschling, The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism, Cell, vol.87, pp.85-94, 1996.

C. D. Laherty, A. N. Billin, R. M. Lavinsky, G. S. Yochum, A. C. Bush et al., of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors, Mol. Cell, vol.2, pp.33-42, 1998.

Y. Zhang, Z. W. Sun, R. Iratni, H. Erdjument-bromage, P. Tempst et al., Mol. Cell, vol.1, pp.1021-1031, 1998.

L. Alland, G. David, H. Shen-li, J. Potes, R. Muhle et al., Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex, Mol. Cell. Biol, vol.22, pp.2743-2750, 2002.

X. Yang, F. Zhang, and J. E. Kudlow, Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: Coupling protein O-GlcNAcylation to transcriptional repression, Cell, vol.110, pp.69-80, 2002.

I. M. Muñoz, T. Macartney, L. Sanchez-pulido, C. P. Ponting, S. Rocha et al., Family with sequence similarity 60A (FAM60A) protein is a cell cycle-fluctuating regulator of the SIN3-HDAC1 histone deacetylase complex, J. Biol. Chem, vol.287, pp.32346-32353, 2012.

T. C. Fleischer, U. J. Yun, and D. E. Ayer, Identification and characterization of three new components of the mSin3A corepressor complex, Mol. Cell. Biol, vol.23, pp.3456-3467, 2003.

J. Li, Q. Lin, W. Wang, P. Wade, and J. Wong, Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression, Genes Dev, vol.16, pp.687-692, 2002.

H. Peinado, E. Ballestar, M. Esteller, and A. Cano, Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex, Mol. Cell. Biol, vol.24, pp.306-319, 2004.

K. Kumamoto, K. Fujita, R. Kurotani, M. Saito, M. Unoki et al., ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression, Int. J. Cancer, vol.125, pp.1306-1315, 2009.

M. E. Sardiu, K. T. Smith, B. D. Groppe, J. M. Gilmore, A. Saraf et al., Suberoylanilide hydroxamic acid (SAHA)-induced dynamics of a human histone deacetylase protein interaction network, Mol. Cell Proteomics, vol.13, pp.3114-3125, 2014.

K. Kumamoto, E. A. Spillare, K. Fujita, I. Horikawa, T. Yamashita et al., Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence, Cancer Res, vol.68, pp.3193-3203, 2008.

M. Serrano, A. W. Lin, M. E. Mccurrach, D. Beach, and S. W. Lowe, Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell, vol.88, pp.593-602, 1997.

J. Lotem and L. Sachs, Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents, Blood, vol.82, pp.1092-1096, 1993.

E. Yonish-rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi et al., Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature, vol.352, pp.345-347, 1991.

D. Leonardo, A. Linke, S. P. Clarkin, K. Wahl, and G. M. , DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts, Genes Dev, vol.8, pp.2540-2551, 1994.

F. Lu, D. L. Dai, M. Martinka, V. Ho, and G. Li, Nuclear ING2 expression is reduced in human cutaneous melanomas, Br. J. Cancer, vol.95, pp.80-86, 2006.

H. Zhang, K. Pan, H. Wang, D. Weng, H. Song et al., Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma, Cancer Lett, vol.261, pp.183-192, 2008.

S. Zhao, X. Yang, W. Gou, H. Lu, H. Li et al., Expression profiles of inhibitor of growth protein 2 in normal and cancer tissues: An immunohistochemical screening analysis, Mol. Med. Rep, vol.13, pp.1881-1887, 2016.

X. Han, X. Bai, Y. Sun, and Y. Yang, Nuclear ING2 expression is reduced in osteosarcoma, Oncol. Rep, vol.32, 1967.

J. Jiang, Y. Liu, Y. Zhao, F. Tian, and G. Wang, miR-153-3p Suppresses Inhibitor of Growth Protein 2 Expression to Function as Tumor Suppressor in Acute Lymphoblastic Leukemia, Technol. Cancer Res. Treat, vol.18, p.1533033819852990, 2019.

M. Temel, A. Turkmen, R. Dokuyucu, C. Cevik, S. Oztuzcu et al., A novel tumor suppressor gene in basal cell carcinoma: Inhibition of growth factor-2, Tumour Biol, vol.36, pp.4611-4616, 2015.

T. Okano, A. Gemma, Y. Hosoya, Y. Hosomi, M. Nara et al., Alterations in novel candidate tumor suppressor genes, ING1 and ING2 in human lung cancer, Oncol. Rep, vol.15, pp.545-549, 2006.

A. A. Walzak, N. Veldhoen, X. Feng, K. Riabowol, and C. C. Helbing, Expression profiles of mRNA transcript variants encoding the human inhibitor of growth tumor suppressor gene family in normal and neoplastic tissues, Exp. Cell Res, vol.314, pp.273-285, 2008.

Y. Gao, H. Ma, C. Gao, Y. Lv, X. Chen et al., Tumor-promoting properties of miR-8084 in breast cancer through enhancing proliferation, suppressing apoptosis and inducing epithelial-mesenchymal transition, J. Transl. Med, vol.16, 2018.

M. Gournay, M. Paineau, J. Archambeau, and R. Pedeux, Regulat-INGs in tumors and diseases: Focus on ncRNAs, Cancer Lett, vol.447, pp.66-74, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02015576

E. Sironi, A. Cerri, D. Tomasini, S. M. Sirchia, G. Porta et al., Loss of heterozygosity on chromosome 4q32-35 in sporadic basal cell carcinomas: Evidence for the involvement of p33ING2/ING1L and SAP30 genes, J. Cutan. Pathol, vol.31, pp.318-322, 2004.

S. S. Borkosky, M. Gunduz, H. Nagatsuka, L. B. Beder, E. Gunduz et al., Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma, J. Cancer Res. Clin. Oncol, vol.135, pp.703-713, 2009.

H. Zhang, H. Ma, Q. Wang, M. Chen, D. Weng et al., Analysis of loss of heterozygosity on chromosome 4q in hepatocellular carcinoma using high-throughput SNP array, Oncol. Rep, vol.23, pp.445-455, 2010.

S. S. Borkosky, M. Gunduz, L. Beder, H. Tsujigiwa, R. Tamamura et al., Allelic loss of the ING gene family loci is a frequent event in ameloblastoma, Oncol. Res, vol.18, pp.509-518, 2010.

E. Cetin, B. Cengiz, E. Gunduz, M. Gunduz, H. Nagatsuka et al., Deletion mapping of chromosome 4q22-35 and identification of four frequently deleted regions in head and neck cancers, Neoplasma, vol.55, pp.299-304, 2008.

K. R. Mittal, F. Chen, J. J. Wei, K. Rijhvani, R. Kurvathi et al., Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas, Mod. Pathol, vol.22, pp.1303-1311, 2009.

H. Wang, C. Yang, S. Wang, T. Wang, J. Han et al., Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer, J. Biomed. Res, vol.32, pp.424-433, 2018.

E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer et al., The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data, Cancer Discov, vol.2, pp.401-404, 2012.

J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Sci. Signal, vol.6, 2013.

D. Ythier, E. Brambilla, R. Binet, D. Nissou, A. Vesin et al., Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma, Lung Cancer, vol.69, pp.180-186, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02345566

Y. Q. Pan, X. Zhang, D. P. Xu, W. G. Bao, A. F. Lin et al., Decreased expression of ING2 gene and its clinicopathological significance in Chinese NSCLC patients, Neoplasma, vol.61, pp.468-475, 2014.

A. Zeyadi, M. Dimova, I. Ranchich, V. Rukova, B. Nesheva et al., Whole genome microarray analysis in non-small cell lung cancer, Biotechnol. Biotechnol. Equip, vol.29, pp.111-118, 2015.

J. Nie, L. Liu, M. Wu, G. Xing, S. He et al., HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation, FEBS Lett, vol.584, pp.3005-3012, 2010.

H. Li, N. Xiao, Y. Wang, R. Wang, Y. Chen et al., Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKI?, vol.36, pp.5668-5680, 2017.

W. Tan, A. Jain, A. Takano, E. W. Newell, N. G. Iyer et al., Novel therapeutic targets on the horizon for lung cancer, Lancet Oncol, vol.17, pp.347-362, 2016.

E. Smolle, N. Fink-neuboeck, J. Lindenmann, F. Smolle-juettner, and M. Pichler, The Biological and Clinical Relevance of Inhibitor of Growth (ING) Genes in Non-Small Cell Lung Cancer, Cancers, vol.11, 1118.

A. Tsherniak, F. Vazquez, P. G. Montgomery, B. A. Weir, G. Kryukov et al., Defining a Cancer Dependency Map, vol.170, pp.564-576, 2017.

C. D. Laherty, W. M. Yang, J. M. Sun, J. R. Davie, E. Seto et al., Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression, Cell, vol.89, pp.349-356, 1997.

S. M. Cowley, B. M. Iritani, S. M. Mendrysa, T. Xu, P. F. Cheng et al., The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development, Mol. Cell. Biol, vol.25, pp.6990-7004, 2005.

J. Dannenberg, G. David, S. Zhong, J. Van-der-torre, W. H. Wong et al., A. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival, Genes Dev, vol.19, pp.1581-1595, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00708743

C. Yao, G. Carraro, B. Konda, X. Guan, T. Mizuno et al., Sin3a regulates epithelial progenitor cell fate during lung development, vol.144, pp.2618-2628, 2017.

N. Bansal, G. David, E. Farias, and S. Waxman, Emerging Roles of Epigenetic Regulator Sin3 in Cancer, Adv. Cancer Res, vol.130, pp.113-135, 2016.

Y. Kwon, K. Petrie, B. A. Leibovitch, L. Zeng, M. Mezei et al., Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer, Mol. Cancer Ther, vol.14, pp.1824-1836, 2015.

P. Mcdonel, J. Demmers, D. W. Tan, F. Watt, and B. D. Hendrich, Sin3a is essential for the genome integrity and viability of pluripotent cells, Dev. Biol, vol.363, pp.62-73, 2012.

K. T. Smith, S. A. Martin-brown, L. Florens, M. P. Washburn, and J. L. Workman, Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex, Chem. Biol, vol.17, pp.65-74, 2010.

V. M. Richon, T. W. Sandhoff, R. A. Rifkind, and P. A. Marks, Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation, Proc. Natl. Acad. Sci, vol.97, pp.10014-10019, 2000.

D. Larrieu, D. Ythier, and C. Brambilla, Cell Cycle, vol.9, pp.3984-3990, 2010.

P. A. Jones, J. J. Issa, and S. Baylin, Targeting the cancer epigenome for therapy, Nat. Rev. Genet, vol.17, pp.630-641, 2016.

R. Loewith, M. Meijer, S. P. Lees-miller, K. Riabowol, and D. Young, Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities, Mol. Cell. Biol, vol.20, pp.3807-3816, 2000.

J. V. Kichina, M. Zeremski, L. Aris, K. V. Gurova, E. Walker et al., Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas, Oncogene, vol.25, pp.857-866, 2006.

M. S. Roca, E. Di-gennaro, and A. Budillon, Implication for Cancer Stem Cells in Solid Cancer Chemo-Resistance: Promising Therapeutic Strategies Based on the Use of HDAC Inhibitors, J. Clin. Med, vol.8, p.912, 2019.

S. Patra, D. P. Panigrahi, P. P. Praharaj, C. S. Bhol, K. K. Mahapatra et al., Dysregulation of histone deacetylases in carcinogenesis and tumor progression: A possible link to apoptosis and autophagy, Cell. Mol. Life Sci, vol.76, pp.3263-3282, 2019.

T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone Deacetylase Inhibitors as Anticancer Drugs, Int. J. Mol. Sci, vol.18, 1414.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI