C. Vila, J. E. Maldonado, and W. Rk, Phylogenetic relationships, evolution, and genetic diversity of the domestic dog, J Hered, vol.90, pp.71-78, 1999.

W. Rk and E. A. Ostrander, Origin, genetic diversity, and genome structure of the domestic dog, Bioessays, vol.21, pp.247-57, 1999.

K. Lindblad-toh, W. Cm, and T. S. Mikkelsen, Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, vol.438, pp.803-822, 2005.

J. Plassais, K. J. , and D. Bw, Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology, Nat Commun, vol.10, p.1489, 2019.

J. Plassais, M. Rimbault, and F. J. Williams, Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness, PLoS Genet, vol.13, p.1006661, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508065

T. A. Mansour, K. Lucot, and S. E. Konopelski, Whole genome variant association across 100 dogs identifies a frame shift mutation in DISHEVELLED 2 which contributes to Robinow-like syndrome in Bulldogs and related screw tail dog breeds, PLoS Genet, vol.14, p.1007850, 2018.

C. Drögemüller, E. K. Karlsson, and M. K. Hytönen, A mutation in hairless dogs implicates FOXI3 in ectodermal development, Science, vol.321, p.1462, 2008.

E. Cadieu, M. W. Neff, and P. Quignon, Coat variation in the domestic dog is governed by variants in three genes, Science, vol.326, pp.150-153, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00412221

D. Bannasch, Y. A. Myers, and J. , Localization of canine brachycephaly using an across breed mapping approach, PLoS One, vol.5, p.9632, 2010.

T. W. Marchant, J. E. Mcteir, and L. , Canine brachycephaly is associated with a retrotransposonmediated missplicing of SMOC2, Curr Biol, vol.27, pp.1573-84, 2017.

J. J. Schoenebeck, S. A. Hutchinson, and A. Byers, Variation of BMP3 contributes to dog breed skull diversity, PLoS Genet, vol.8, p.1002849, 2012.

T. G. Berryere, J. A. Kerns, and G. S. Barsh, Association of an agouti allele with fawn or sable coat color in domestic dogs

, Mamm Genome, vol.16, pp.262-72, 2005.

S. I. Candille, C. B. Kaelin, and B. M. Cattanach, A -defensin mutation causes black coat color in domestic dogs, Science, vol.318, pp.1418-1441, 2007.

C. Drögemüller, U. Philipp, and B. Haase, A noncoding melanophilin gene (MLPH) SNP at the splice donor of exon 1 represents a candidate causal mutation for coat color dilution in dogs, J Hered, vol.98, pp.468-73, 2007.

E. K. Karlsson, I. Baranowska, and C. M. Wade, Efficient mapping of mendelian traits in dogs through genome-wide association, Nat Genet, vol.39, pp.1321-1329, 2007.

J. Kim, F. J. Williams, and D. L. Dreger, Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs, Proc Natl Acad Sci, vol.115, p.1700398, 2017.

P. Jones, C. K. Martin, and A. , Single-nucleotide-polymorphism-based association mapping of dog stereotypes, Genetics, vol.179, pp.1033-1077, 2008.

J. Våge, T. B. Bønsdorff, and E. Arnet, Differential gene expression in brain tissues of aggressive and non-aggressive dogs, BMC Vet Res, vol.6, p.34, 2010.

E. K. Karlsson and K. Lindblad-toh, Leader of the pack: gene mapping in dogs and other model organisms, Nat Rev Genet, vol.9, pp.713-738, 2008.

A. R. Boyko, The domestic dog: man's best friend in the genomic era, Genome Biol, vol.12, p.216, 2011.

D. Bw and E. A. Ostrander, Domestic dogs and cancer research: a breedbased genomics approach, ILAR J, vol.55, pp.59-68, 2014.

A. K. Club, The New Complete Dog Book, 2017.

C. A. Rogers and A. H. Brace, The International Encyclopedia of Dogs, 1995.

B. Wilcox and C. Walkowicz, Atlas of Dog Breeds of the World, 1995.

J. M. Akey, A. L. Ruhe, and D. T. Akey, Tracking footprints of artificial selection in the dog genome, Proc Natl Acad Sci, vol.107, pp.1160-1165, 2010.

A. Boyko, P. Quignon, and L. Li, A simple genetic architecture underlies morphological variation in dogs, PLoS Biol, vol.8, p.1000451, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00512737

A. Vaysse, A. Ratnakumar, and T. Derrien, Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping, PLoS Genet, vol.7, p.1002316, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00638834

J. J. Hayward, M. G. Castelhano, and K. C. Oliveira, Complex disease and phenotype mapping in the domestic dog, Nat Commun, vol.7, p.10460, 2016.

E. A. Ostrander, W. Rk, and A. H. Freedman, Demographic history, selection and functional diversity of the canine genome, Nat Rev Genet, vol.18, pp.705-725, 2017.

J. D. Schiffman and M. Breen, Comparative oncology: what dogs and other species can teach us about humans with cancer, Philos Trans R Soc Lond B Biol Sci, vol.370, 2015.

A. J. Sams and A. R. Boyko, Fine-scale resolution of runs of homozygosity reveal patterns of inbreeding and substantial overlap with recessive disease genotypes in domestic dogs, G3 (Bethesda), vol.9, pp.117-140, 2019.

P. A. Thalmann and O. , Paleogenomic Inferences of Dog Domestication, 2018.

M. Ollivier, A. Tresset, and L. Frantz, Dogs accompanied humans during the Neolithic expansion into, Europe. Biol Lett, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01903172

G. D. Wang, F. Rx, and W. Zhai, Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau

, Genome Biol Evol, vol.6, pp.2122-2130, 2014.

E. Axelsson, A. Ratnakumar, and M. L. Arendt, The genomic signature of dog domestication reveals adaptation to a starch-rich diet, Nature, vol.495, pp.360-364, 2013.

C. D. Marsden, O. Vecchyo, D. , O. 'brien, and D. P. , Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs, Proc Natl Acad Sci, vol.113, pp.152-159, 2016.

L. A. Frantz, V. E. Mullin, and M. Pionnier-capitan, Genomic and archaeological evidence suggest a dual origin of domestic dogs, Science, vol.352, pp.1228-1259, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326370

L. R. Botigue, S. Song, and A. Scheu, Ancient European dog genomes reveal continuity since the Early Neolithic, Nat Commun, vol.8, pp.163-73, 2016.
URL : https://hal.archives-ouvertes.fr/halshs-02186121

C. Vilà, P. Savolainen, and J. E. Maldonado, Multiple and ancient origins of the domestic dog, Science, vol.276, pp.1687-1696, 1997.

A. H. Freedman, I. Gronau, and R. M. Schweizer, Genome sequencing highlights the dynamic early history of dogs, PLoS Genet, vol.10, p.1004016, 2014.

G. Larson and D. G. Bradley, How much is that in dog years? The advent of canine population genomics, PLoS Genet, vol.10, p.1004093, 2014.

P. Skoglund, E. E. Palkopoulou, and E. , Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into highlatitude breeds, Curr Biol, vol.25, pp.1515-1524, 2015.

O. Thalmann, B. Shapiro, and P. Cui, Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs, Science, vol.342, pp.871-875, 2013.

J. F. Pang, C. Kluetsch, and X. J. Zou, mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves, Mol Biol Evol, vol.26, pp.2849-64, 2009.

G. D. Wang, W. Zhai, and Y. Hc, The genomics of selection in dogs and the parallel evolution between dogs and humans, Nat Commun, vol.4, p.1860, 2013.

L. M. Shannon, R. H. Boyko, and M. Castelhano, Genetic structure in village dogs reveals a Central Asian domestication origin, Proc Natl Acad Sci, vol.112, pp.13639-13683, 2015.

G. D. Wang, W. Zhai, and Y. Hc, Out of southern East Asia: the natural history of domestic dogs across the world, Cell Res, vol.26, pp.21-33, 2016.

F. Cruz, C. Vila, and M. T. Webster, The legacy of domestication: accumulation of deleterious mutations in the dog genome, Mol Biol Evol, vol.25, pp.2331-2337, 2008.

G. Larson, E. K. Karlsson, and P. A. , Rethinking dog domestication by integrating genetics, archeology, and biogeography, Proc Natl Acad Sci, vol.109, pp.8878-83, 2012.

E. Huerta-sánchez, J. X. , and A. Bz, Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA, Nature, vol.512, pp.194-201, 2014.

B. Miao, W. Z. Li, and Y. , Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the grey wolf from the Tibetan Plateau, Mol Biol Evol, vol.34, pp.734-777, 2016.

Y. Li, D. D. Wu, and A. R. Boyko, Population variation revealed high-altitude adaptation of Tibetan mastiffs, Mol Biol Evol, vol.31, pp.1200-1205, 2014.

J. Caspermeyer, A tale of dog and man: Tibetan Mastiff found to gain highaltitude adaptation after domestication by interbreeding with the Tibet Gray Wolf, Mol Biol Evol, vol.34, pp.775-781, 2017.

H. Wu, Y. H. Liu, and G. D. Wang, Identifying molecular signatures of hypoxia adaptation from sex chromosomes: a case for Tibetan Mastiff based on analyses of X chromosome, Sci Rep, vol.6, p.35004, 2016.

R. M. Schweizer, A. Durvasula, and J. Smith, Natural selection and origin of a melanistic allele in North American gray wolves, Mol Biol Evol, vol.35, pp.1190-209, 2018.

D. L. Dreger, D. Bw, and R. Cocco, Commonalities in development of pure breeds and population isolates revealed in the genome of the Sardinian Fonni's Dog, Genetics, vol.204, pp.737-55, 2016.

M. Ollivier, A. Tresset, and F. Bastian, Amy2B copy number variation reveals starch diet adaptations in ancient European dogs, R Soc Open Sci, vol.3, p.160449, 2016.

W. Rk, Evolutionary genomics of dog domestication

, Mamm Genome, vol.23, pp.3-18, 2012.

B. M. Vonholdt, J. P. Pollinger, and K. E. Lohmueller, Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication, Nature, vol.464, pp.898-902, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00466086

. Ostrander, , 2020.

K. R. Bm and J. P. Pollinger, Admixture mapping identifies introgressed genomic regions in North American canids, Mol Ecol, vol.25, pp.2443-53, 2016.

H. G. Parker, D. L. Dreger, and M. Rimbault, Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development, Cell Rep, vol.19, pp.697-708, 2017.

T. M. Anderson and S. I. Candille, Molecular and evolutionary history of melanism in North American gray wolves, Science, vol.323, pp.1339-1382, 2009.

X. Gou, W. Z. Li, and N. , Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia

, Genome Res, vol.24, pp.1308-1323, 2014.

G. Wang, X. Shao, and B. Bai, Structural variation during dog domestication: insights from gray wolf and dhole genomes, Natl Sci Rev, vol.6, pp.110-132, 2019.

L. Loog, M. G. Thomas, and R. Barnett, Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices, Mol Biol Evol, vol.34, pp.1981-90, 2017.

E. Axelsson, M. T. Webster, and A. Ratnakumar, Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome, Genome Res, vol.22, pp.51-63, 2012.

C. Khanna and I. Gordon, Catching cancer by the tail: new perspectives on the use of kinase inhibitors, Clin Cancer Res, vol.15, pp.3645-3652, 2009.

D. F. Merlo, L. Rossi, and C. Pellegrino, Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy, J Vet Intern Med, vol.22, pp.976-84, 2008.

D. L. Dreger, M. Rimbault, and D. Bw, Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping, Dis Model Mech, vol.9, pp.1445-60, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01478387

T. W. Lewis, A. Bm, and S. C. Blott, Trends in genetic diversity for all Kennel Club registered pedigree dog breeds, Canine Genet Epidemiol, vol.2, p.13, 2015.

N. B. Sutter, M. A. Eberle, and H. G. Parker, Extensive and breed-specific linkage disequilibrium in Canis familiaris, Genome Res, vol.14, pp.2388-96, 2004.

F. Schlamp, J. Van-der-made, and R. Stambler, Evaluating the performance of selection scans to detect selective sweeps in domestic dogs, Mol Ecol, vol.25, pp.342-56, 2016.

B. Broeckx, T. Derrien, and S. Mottier, An exome sequencing based approach for genome-wide association studies in the dog, Sci Rep, vol.7, p.15680, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01659287

E. A. Ostrander and L. Kruglyak, Unleashing the canine genome, Genome Res, vol.10, pp.1271-1275, 2000.

H. Parker, A. V. Kukekova, and D. T. Akey, Breed relationships facilitate finemapping studies: a 7.8-kb deletion cosegregates with collie eye anomaly across multiple dog breeds, Genome Res, vol.17, pp.1562-71, 2007.

N. B. Sutter, D. S. Mosher, and M. M. Gray, Morphometrics within dog breeds are highly reproducible and dispute Rensch's rule, Mamm Genome, vol.19, pp.713-736, 2008.

M. Rimbault, H. C. Beale, and J. J. Schoenebeck, Derived variants at six genes explain nearly half of size reduction in dog breeds, Genome Res, vol.23, pp.1985-95, 2013.

N. B. Sutter, C. D. Bustamante, and K. Chase, A single IGF1 allele is a major determinant of small size in dogs, Science, vol.316, pp.112-117, 2007.

B. C. Hoopes, M. Rimbault, and D. Liebers, The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs, Mamm Genome, vol.23, pp.780-90, 2012.

M. Persson and B. , Association between body mass index and insulin receptor substrate-4 (IRS-4) gene polymorphisms in patients with schizophrenia, Neuro Endocrinol Lett, vol.32, pp.634-674, 2011.

Y. Sun, B. Bak, and N. Schoenmakers, Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement, Nat Genet, vol.44, pp.1375-81, 2012.

Y. Asakura, A. K. Muroya, and K. , Combined growth hormone and thyroidstimulating hormone deficiency in a Japanese patient with a novel frameshift mutation in IGSF1, Horm Res Paediatr, vol.84, pp.349-54, 2015.

A. H. Lango, K. Estrada, and G. Lettre, Hundreds of variants clustered in genomic loci and biological pathways affect human height, Nature, vol.467, pp.832-840, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00904990

A. N'diaye, C. Gk, and C. D. Palmer, Identification, replication, and finemapping of loci associated with adult height in individuals of African ancestry, PLoS Genet, vol.7, p.1002298, 2011.

M. Mankowska, P. Krzeminska, and M. Graczyk, Confirmation that a deletion in the POMC gene is associated with body weight of Labrador Retriever dogs, Res Vet Sci, vol.112, pp.116-124, 2017.

L. J. Davison, A. Holder, and B. Catchpole, The canine POMC gene, obesity in Labrador Retrievers and susceptibility to diabetes mellitus, J Vet Intern Med, vol.31, pp.343-351, 2017.

E. Raffan, R. J. Dennis, and O. Cj, A deletion in the canine POMC gene is associated with weight and appetite in obesity-prone Labrador Retriever dogs, Cell Metab, vol.23, pp.893-900, 2016.

M. Mankowska, M. Stachowiak, and A. Graczyk, Sequence analysis of three canine adipokine genes revealed an association between TNF polymorphisms and obesity in Labrador dogs, Anim Genet, vol.47, pp.245-254, 2016.

F. G. Van-steenbeek, M. K. Hytonen, and P. A. Leegwater, The canine era: the rise of a biomedical model, Anim Genet, vol.47, pp.519-546, 2016.

J. M. Dobson, Breed-predispositions to cancer in pedigree dogs, ISRN Vet Sci, vol.2013, pp.1-23, 2013.

K. S. Rankin, M. Starkey, and J. Lunec, Of dogs and men: comparative biology as a tool for the discovery of novel biomarkers and drug development targets in osteosarcoma, Pediatr Blood Cancer, vol.58, pp.327-360, 2012.

H. Gardner, J. Fenger, and C. London, Dogs as a model for cancer, Annu Rev Anim Biosci, vol.4, pp.199-222, 2016.

J. Abadie, B. Hédan, and E. Cadieu, Epidemiology, pathology, and genetics of histiocytic sarcoma in the Bernese Mountain Dog breed, J Hered, vol.100, pp.19-27, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00405708

P. F. Moore, V. K. Affolter, and W. Vernau, Canine hemophagocytic histiocytic sarcoma: a proliferative disorder of CD11d+ macrophages, Vet Pathol, vol.43, pp.632-677, 2006.

S. A. Erich, F. Constantino-casas, and J. M. Dobson, Morphological distinction of histiocytic sarcoma from other tumor types in Bernese Mountain dogs and Flatcoated Retrievers, In Vivo, vol.32, pp.7-17, 2018.

B. C. Sommer, D. Dhawan, and T. L. Ratliff, Naturally-occurring canine invasive urothelial carcinoma: a model for emerging therapies, Bladder Cancer, vol.4, pp.149-59, 2018.

N. Tonomura, E. I. Thomas, and R. , Genome-wide association study identifies shared risk loci common to two malignancies in Golden Retrievers, PLoS Genet, vol.11, p.1004922, 2015.

S. Simpson, M. D. Dunning, and S. De-brot, Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics, Acta Vet Scand, vol.59, p.71, 2017.

M. Danek, J. Danek, and A. Araszkiewicz, Large animal as a potential models of humans mental and behavioral disorders, Psychiatr Pol, vol.51, pp.1009-1036, 2017.

M. Bence, M. P. Szantai, and E. , Lessons from the canine Oxtr gene: populations, variants and functional aspects, Genes Brain Behav, vol.16, pp.427-465, 2017.

A. H. Freedman, R. M. Schweizer, O. Vecchyo, and D. , Demographically-based evaluation of genomic regions under selection in domestic dogs, PLoS Genet, vol.12, p.1005851, 2016.

A. L. Pendleton, F. Shen, and A. M. Taravella, Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication, BMC Biol, vol.16, p.64, 2018.

A. V. Kukekova, J. J. Xiang, and X. , Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours, Nat Ecol Evol, vol.2, pp.1479-91, 2018.

M. Grados and H. C. Wilcox, Genetics of obsessive-compulsive disorder: a research update, Expert Rev Neurother, vol.7, pp.967-80, 2007.

N. H. Dodman, B. R. Gliatto, and J. , Tail chasing in a bull terrier, J Am Vet Med Assoc, vol.202, pp.758-60, 1993.

A. A. Moon-fanelli, N. H. Dodman, and T. R. Famula, Characteristics of compulsive tail chasing and associated risk factors in Bull Terriers, J Am Vet Med Assoc, vol.238, pp.883-892, 2011.

A. A. Moon-fanelli, N. H. Dodman, and N. Cottam, Blanket and flank sucking in Doberman Pinschers, J Am Vet Med Assoc, vol.231, pp.907-919, 2007.

R. Tang, H. J. Noh, and D. Wang, Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder

, Genome Biol, vol.15, p.25, 2014.

H. J. Noh, R. Tang, and J. Flannick, Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder, Nat Commun, vol.17, p.774, 2017.

J. Ilska, M. J. Haskell, and S. C. Blott, Genetic characterization of dog personality traits, Genetics, vol.206, pp.1101-1112, 2017.

J. Koch, I. , C. Mm, and M. J. Thompson, The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves, Mol Ecol, vol.25, pp.1838-55, 2016.

Z. Banlaki, G. Cimarelli, and Z. Viranyi, DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds, Mol Genet Genomics, vol.292, pp.685-97, 2017.

P. Howell, At Home and Astray: The Domestic dog in Victorian Britain. Charlottesville, 2015.

A. R. Boyko, R. H. Boyko, and C. M. Boyko, Complex population structure in African village dogs and its implications for inferring dog domestication history, Proc Natl Acad Sci, vol.106, pp.13903-13911, 2009.

M. Montague, L. G. Gandolfi, and B. , Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication, Proc Natl Acad Sci, vol.111, pp.17230-17235, 2014.

, Pet Ownership & Demographics Sourcebook

B. M. Vonholdt, D. R. Stahler, and D. W. Smith, The genealogy and genetic viability of reintroduced Yellowstone grey wolves, Mol Ecol, vol.17, pp.252-74, 2008.

B. Tang, Q. Zhou, and L. Dong, iDog: an integrated resource for domestic dogs and wild canids, Nucleic Acids Res, vol.47, pp.793-800, 2019.

B. Bai, W. M. Zhao, and B. X. Tang, DoGSD: the dog and wolf genome SNP database, Nucleic Acids Res, vol.43, pp.777-83, 2015.