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Forward-Inverse 2D Hardware Implementation of
Approximate Transform Core for the VVC Standard
Ahmed Kammoun, Wassim Hamidouche, Pierrick Philippe, Olivier Déforges, Fatma Belghith, Nouri Masmoudi,

and Jean-François Nezan,

Abstract—The future video coding standard named Versatile
Video Coding (VVC) is expected by the end of 2020. VVC will
enable better coding efficiency than the current High Efficiency
Video Coding (HEVC) standard. This coding gain is brought by
several coding tools. The Multiple Transform Selection (MTS)
is one of the key coding tools that have been introduced in
VVC. The MTS concept relies on three transform types including
Discrete Cosine Transform (DCT)-II, Discrete Sine Transform
(DST)-VII and DCT-VIII. Unlike the DCT-II that has fast
computing algorithms, the DST-VII and DCT-VIII rely on more
complex matrix multiplication.

In this paper an approximation approach is proposed to reduce
the computational cost of the DST-VII and DCT-VIII. The
approximation consists in applying adjustment stages, based on
sparse block-band matrices, to a variant of DCT-II family mainly
DCT-II and its inverse. Genetic algorithm is used to derive the
optimal coefficients of the adjustment matrices. Moreover, an
efficient hardware implementation of the forward and inverse
approximate transform module is proposed. The architecture
design includes a pipelined and reconfigurable forward-inverse
DCT-II core transform as it is the main core for DST-VII and
DCT-VIII computations. The proposed 32-point 1D architecture
including low cost adjustment stages allows the processing of
a video in 2K and 4K resolutions at 1095 and 273 frames per
second, respectively. A unified 2D implementation of forward-
inverse DCT-II, approximate DST-VII and DCT-VIII is also
presented. The synthesis results show that the design is able to
sustain a video in 2K and 4K resolutions at 386 and 96 frames
per second, respectively, while using only 12% of Alms, 22% of
registers and 30% of DSP blocks of the Arria10 SoC platform.

Index Terms—Versatile Video Coding, Hardware implementa-
tion, Approximation, DCT-II, Adjustment stages, FPGA.

I. INTRODUCTION

The increasing demand on video contents coupled with
the emerging video formats including 4K, 8K resolutions,
High Frame Rate (HFR), High Dynamic Range (HDR) and
omnidirectional videos considerably contribute to increase the
traffic over Internet. Recent study conducted by Cisco in [1]
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Fig. 1. Illustration of the first four basis functions of DCT-II, DCT-VIII and
DST-VII

has predicted that video traffic will increase from 61% of the
global IP traffic in 2016 to 82% in 2021. This brings new chal-
lenges to video compression community to further enhance
the coding efficiency of the High Efficiency Video Coding
(HEVC) video coding standard. The Joint Video Experts Team
(JVET), established by Motion Picture Experts Group (MPEG)
and Video Coding Experts Group (VCEG) [2], has been
developing the next generation video coding standard called
Versatile Video Coding (VVC). VVC standard, expected by
the end of 2020, introduces several new coding tools enabling
up to ∼ 30% [3] of coding gain beyond HEVC [4]. However,
this coding gain comes at the expense of additional coding
and decoding complexities estimated in Random Access (RA)
configuration to 800% and 170% [5], respectively. These
complexities increase to 2170% and 179% in All Intra (AI)
coding configuration [5]. Multiple Transform Selection (MTS)
is one of the new concepts introduced in VVC [6]. The earlier
version of the MTS, integrated in the Joint Exploration Model
(JEM), consists of five transform kernels including DCT types
II, V and VIII, and DST types VII and I [7]. In VVC, the
MTS relies only on three trigonometric transforms including
DCT-II and VIII, and DST-VII. These latter leverage the most
of coding gain achieved in the JEM by the five transform
types [8]. The basis functions of DCT-II C2, DST-VII S7

and DCT-VIII C8 are computed by Equations (1), (2) and
(3), respectively [9], while their first four basis functions
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(i = 1, 2, 3, 4) are drown in Fig. 1.
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with (i, j) ∈ {1, 2, . . . , N}2 and N is the transform size.
Besides the usual DCT-II used in video coding standards,

VVC encoder selects combinations of DCT-VIII and DST-
VII, for the horizontal and vertical transforms, to optimize the
Rate Distortion (RD) cost J , a trade-off between distortion D
and rate R [10]

J = D + λR. (4)

While the DCT-II has been well studied and optimized with
fast implementations [11]–[13], the DST-VII/DCT-VIII do not
have efficient fast implementation algorithms [14], [15], and
rely on classical matrix multiplications. In this paper we focus
on approximating the DST-VII based on the inverse DCT-II
and an adjustment band matrix A as initially proposed in [16]

Ŝ7 = Γ · CT2 · Λ ·A, (5)

where Ŝ7 is the approximation of S7, Γ ·CT2 ·Λ is equivalent
to the DST-III transform S3, Λ and Γ matrices are computed
by Equations (6) and (7), respectively.

Λi,j =

{
1, if j = N + 1− i,
0, otherwise. (6)

Γi,j =

{
(−1)i−1, if j = i,

0, otherwise. (7)

The DCT-VIII C8 can be derived from DST-VII, due to their
duality property, without additional complexity involving only
permutation Λ and sign change Γ matrices

C8 = Γ · S7 · Λ. (8)

This paper tackles the problem of hardware implementation
of the three transform types used in VVC on the target Arria
10 Field-Programmable Gate Array (FPGA) platform. The
approximation of DST-VII through adjustment band matrix A
and inverse DCT-II is first modelled as a constrained integer
optimisation problem. The genetic algorithm is then used to
solve the problem and compute the adjustment matrices for
large transform sizes N ∈ {16, 32}. We propose an efficient
unified and pipelined hardware architecture for both forward
and inverse DCT-II. This latter is used to approximate forward
and inverse DST-VII and DCT-VIII along with additional
adjustment stage at low computational complexity and logic
resource allocation. This architecture supports a reconfigurable
2D implementation of approximate DST-VII and DCT-VIII
design that can be integrated in both hardware VVC encoder

and decoder. In terms of coding efficiency, the approximate
DST-VII and DCT-VIII preserve the coding gain brought by
the MTS. On the other hand, the proposed unified hardware
architecture enables reaching a high frame rate while using a
moderate hardware and logic resource of the Arria10 FPGA
device. It enables processing a video in HD and 4K resolutions
at 386 and 96 frames per second (fps), respectively.

The rest of this paper is organized as follows. Section II
presents the state-of-the-art of hardware implementations of
DCT-II and MTS. The approximation of DST-VII, expressed
as a constrained integer optimization problem, is described
in Section III. Section IV presents the proposed hardware
implementation of the 2D approximate transform design. The
experimental and synthesis results of 1D and 2D implemen-
tations are presented and discussed in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORKS

A. Multiple Transform Selection in VVC

The concept of separable transforms competition has been
widely investigated for HEVC [17], [18] which considers only
DCT-II along with DST-VII for Intra luma blocks of size
4×4 [19], and then integrated in the JEM software [10]. This
latter enables five trigonometrical transform types including
DCT-II, V and VIII, and DST-I and VII. This concept enables
a significant increase in coding efficiency estimated around 3%
of bitrate reduction [10]. However, this coding gain comes
at the expense of both memory increase, used to store the
coefficients of those transforms, and complexity overhead
required to test the transform candidates at the encoder side.
To cope with the complexity increase, subsets of transform
candidates are defined offline, which are tested depending on
the prediction configurations such as the Intra prediction mode
and the block size.

The MTS concept in VVC defines only three transform
types including DCT-II, VIII and DST-VII. As illustrated in
Fig. 2, the MTS concept selects, for Luma blocks of size lower
than 64, the set of transforms that minimizes the rate distortion
cost among five transform sets and the skip configuration.
However, only DCT-II is considered for chroma components
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Fig. 2. The concept of 2D separable transforms selection in VVC. X is the
input block of residuals, Y is the output transformed block and MTS flag is
the index of the selected set of transforms

and Luma blocks of size higher than 32. The MTS solution
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brings a significant coding gain of respectively 2% and 0.9%
in AI and RA coding configurations [20] compared to single
DCT-II transform.

B. Hardware Acceleration of Transforms

1) Hardware Implementation of DCT-II: Several DCT-II
hardware implementations have been proposed in the liter-
ature, as it is the common transform used in video coding
standards: Advanced Video Coding (AVC) and HEVC. Shen
et al. [21] presented a unified Very Large Scale Integration
(VLSI) architecture for 4, 8, 16, and 32 point Inverse Integer
Core Transforms (IICT). Regular multipliers and hardware
sharing (recursion) are applied to the 16- and 32-point IICTs.
To reduce the required hardware resources, the intermediate
1D results are transposed using the Static Random Access
Memory (SRAM) module. Work in [22] also leveraged the
SRAMs for the 1D transpose process in their proposed 2D
pipelined and unified DCT/IDCT/Hadamard architecture with
reduced logic resource. Meher et al. [19] presented an efficient
and reusable architectures for DCT-II implementation sup-
porting different sizes using constant matrix multiplications.
This architecture can be pruned to reduce the implementa-
tion complexity of both folded and full-parallel 2D DCT-II
implementations with only a marginal effect on the coding
performance (from 0.8% to 1% Bjøntegaard Delta Rate (BD-
BR) loss in coding efficiency when both DCT-II and inverse
DCT-II are pruned). Chen et al. [23] proposed a 2D hardware
implementation of the HEVC DCT transform. The presented
reconfigurable architecture supports all block sizes from 4×4
to 32×32. To reduce the logic utilization, this implementation
benefits from several hardware resources, such as Digital Sig-
nal Processing (DSP) blocks, multipliers and memory blocks.
The proposed architecture has been synthesized for various
FPGA platforms showing that the design sustains 4Kp30 video
encoding with reduced hardware cost. Ahmed et al. [24]
proposed a dynamic N-point DCT-II hardware implementation
for HEVC inverse transform of sizes 4×4, 8×8, 16×16 and
32×32. The hardware architecture is partially folded in order
to save the area and improve the speed up of the design. This
architecture reaches an operating frequency of 150 MHz which
enables supporting real time processing of 1080p30 video.

2) Hardware Implementation of MTS: Recently, several
works [25]–[29] have investigated the hardware implementa-
tion of the initial version of MTS including the five transform
types. Mert et al. [25] proposed a 2D implementation including
all transform types for 4×4 and 8×8 sizes using adders and
shifts instead of multiplications. Although this work presented
a 2D hardware implementation of all transform types, it only
supports 4×4 and 8×8 block sizes, while the transform of
larger block sizes (16×16 and 32×32) are more complex and
would require more hardware resources. In [26], Garrido et
al. proposed a pipelined 1D hardware implementation for all
block sizes from 4×4 to 32×32. However, this solution only
considers 1D design, while the transform process consists
in 2D operations which could normally be more complex.
Moreover, this design does not consider asymmetric block size
combinations. This work has been then extended in [27] to

support 2D design using Dual port RAMs for the transpose
memory. They proposed to pipeline the 2D process placing two
separate 1D processors in parallel for horizontal and vertical
transforms. In [28], Kammoun et al. presented a multiplierless
implementation of the MTS 4-point transform module. This
has been extended to 2D hardware implementation of all block
sizes (including rectangular ones), with using the Intellectual
Property (IP) Cores multipliers [30] to leverage the DSPs
blocks of the Arria 10 platform [29]. This solution supports
all transform types and enables a 2D transform process with
efficient pipeline architecture. However, it requires high logic
utilization compared to solutions proposed in [25], [26].

3) Approximations of Transform module: Several contribu-
tions have been proposed by the JVET to overcome the com-
plexity/resource allocations issues of the MTS [16], [31]–[33].
These solutions have proposed to reduce the computational
complexity in number of multiplications per pixel required to
process the DST-VII and DCT-VIII. In fact, approximation
of transform module is not new in the literature, and was
widely investigated for DCT-II [34]–[41]. Jridi et al [34]
presented a generalized approximation algorithm for the 8-
point DCT-II. This solution relies on factorizing the DCT
matrix into even-odd decomposition and then replacing the odd
part with the even one to further reduce the operation count.
The approximate 8-point DCT architecture is used to generate
a reconfigurable implementation of larger block sizes based on
the same principle. However, the rough approximation of the
8-point core and using it for larger sizes introduce more than
5% coding loss in terms of rate distortion performance (BD-
BR). Renda et al [35] proposed to approximate the 8-point
DCT-II transform by an exact low-complexity factorization
of the 8-point DCT-II [42] to be used as core module in
the generalized algorithm proposed in [34]. The 8×8 ma-
trix multiplication is reduced to only 5 multiplications and
29 additions. The 8-point scheme is then used to generate
larger transform sizes of 16 and 32. This enables a better
coding performance compared to the work in [34], but it
still achieves a poor rate distortion performance with an
average of 4% bitrate loss. Work in [36] proposed a three
processing levels to approximate the DCT-II transform. This
approach consists in replacing all multiplication operations
with shifts and additions, high frequency coefficient filtering
and then using inexact additions to compute the DCT-II
transform. Work in [37] proposed a DCT-II approximation
based on Walsh Hadamard transform (WHT) followed by
Givens rotations. Considering a statistical analysis, four DCT-
II approximations modes are derived skipping some rotations
to reduce its computational complexity at the expanse of
bitrate loss up to 7.3%, 5.1% and 9.6% for AI, RA and LD
configurations, respectively. Implementation results under 90
nm ASIC enabled high frame rate 8K video processing up
to 64 fps. Sun et al. [38] proposed an approximate DCT-II
design which lies in a combination of truncation schemes of
Least Significant Bit (LSB) and Most Significant Bit (MSB).
Moreover, quantization results are used to determine the all
zero coefficient columns so as their processing is skipped to
further reduce the operational count. Hardware implementation
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TABLE I
COMPUTATIONAL COMPLEXITY OF DCT-II IMPLEMENTATIONS

Transforms 4-point 8-point 16-point 32-point
+ × >> + × >> + × >> + × >>

DCT-II butterfly [19], [21], [23] 8 4 – 28 20 – 100 84 – 372 340 –
DCT-II [24] 17 0 5 74 0 39 232 0 132 548 0 249
DCT-II [25] 88 0 80 784 0 608 – – – – – –
Approximate DCT-II [39] – – – 26 20 – 78 64 – 202 152 –
Approximate DCT-II [40], [41] 8 0 2 24 0 6 64 0 12 160 0 24
Forward multiplication 12 16 – 56 64 – 240 256 – 992 1024 –

results of the approximate DCT-II design show a significant
power and area cost reduction with negligible bitrate losses of
0.27%, 0.05% and 0.21% for AI, RA and LD configurations,
respectively. Chen et al. [39] presented an approximate DCT-II
solution supporting block of sizes from 8 to 64. This solution
relies on a factorizable structure for both even and approximate
odd parts to further reduce its implementation complexity
while preserving similar rate distortion performance compared
to the original solution. Jridi et al. [40] proposed an approxi-
mation method of the HEVC-DCT-II that leverages the even-
odd butterfly architecture. The matrix coefficients of the even
part are replaced by two coefficient values requiring only
shift operations to perform the multiplication. The second
step of the approximation replaces odd part by the even
one in order to reduce the computational complexity of the
design, especially benefiting from the recursion property. As
a result, all multiplications are removed and larger block sizes
implementations are optimized. Work in [41] proposed to
approximate the HEVC DCT-II transform design by using a
similar approach than the one developed in [40], while the
difference lay in odd part coefficients, which are approximated
according to their distance with respect to the extremum two
values (max and min) of the original transform.

These approximation methods of DCT-II certainly decrease
the computational complexity at the expense of some coding
loss in terms of image quality (Peak Signal to Noise Ra-
tio (PSNR)) and BD-BR performance. However, unlike the
HEVC, MTS involves three transform types. Therefore, in
the proposed solution, the DCT-II is not approximated and
used instead as the main core to approximate the DST-VII
and DCT-VIII. Otherwise, the coding loss would no longer be
neglected to preserve the MTS coding gain estimated between
1 to 2% in VVC. The computational complexity, in terms of
number of multiplications, additions and shifts of the different
DCT-II implementations are summarized in TABLE I for
different block sizes N ∈ {4, 8, 16, 32}.

III. APPROXIMATION METHOD OF THE MTS
TRANSFORMS

A. Problem Formulation

In order to reduce the computational complexity and the
resource allocation of the transform block, the approximation
approach originally proposed in [16] presents an efficient al-
ternative that approximates several DCT/DST types. It consists
in applying adjustment stages of low complexity to DCT-

II family transforms. The relations between these DCT-II
variants transform matrices are expressed as follow

C3 = CT2 , S2 = Λ · C2 · Γ, S3 = Γ · CT2 · Λ, (9)

where Λ and Γ are defined in Equations (6) and (7) with
N ∈ {4, 8, 16, 32}.
In fact, Λ and Γ matrices can be interpreted by vector reflection
and sign changes, respectively, which are computationally
trivial. Using the transforms of Equation (9), different types of
DCTs and DSTs can be approximated by applying adjustment
stages (pre-processing and post-processing) to the DCT-II
family transforms.

In this paper, we focus on the approximation of the DST-
VII based on the inverse DCT-II and then DCT-VIII can
be derived from the approximate DST-VII Ŝ7 as expressed
in Equation (8). TABLE II gives the DCT-II family used to
approximate forward and inverse DST-VII and DCT-VIII.

TABLE II
DCT-II VARIANTS USED TO APPROXIMATE DST-VII AND DCT-VIII

Transform type DCT-II DST-VII DCT-VIII
Forward DCT-II DST-III DCT-III
Inverse DCT-III DST-II DCT-II

B. Approximation through Adjustment Stage

The proposed DST-VII approximation (Ŝ7) enables reduc-
tion of the DST-VII computational complexity since it only
involves the DCT-II transform and a multiplication by a band
matrix A. Therefore, the complexity of this approximation is
equal to the complexity of the DCT-II plus the complexity
related to the multiplication by the band matrix A which
depends on the maximum number of non-zero coefficients by
row θ. The complexity of the multiplication by the matrix A
in terms of numbers of multiplications and additions are given
by θ N and (θ − 1)N , respectively.
The error between the DST-VII S7 and its approximation Ŝ7

is expressed by a weighted least-squares error

E(A) =
N∑
i=1

ωi

N∑
j=1

(
S7 i,j − Ŝ7 i,j

)2
, (10)

where ωi, i ∈ {1, . . . , N} is a weight vector of size N which
might account for the relative importance of the frequency
components. When the ωi is constant equal to 1, the error
function corresponds to the squared Frobenius norm.
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Orthogonality has to be taken in consideration for the
adjustment matrix A. This property is required since it enables
the use of transpose matrix instead of its inverse to recover
the original signal without introducing losses at compression
stage. The orthogonality of the adjustment matrix A can be
expressed by Equation (11)

O(A) = ||A ·AT − I||2F , (11)

where I is the identity matrix and || · ||F stands for the
Frobenius norm. The objective function of this constrained op-
timization problem is expressed with a Lagrangian multiplier
λ as follows

min
A
E + λO(A). (12)

Equation (12) aims to minimize the trade-off between error
E(A) and orthogonality O(A) of the approximate transform
Ŝ7. The trade-off between approximation and orthogonality
can be tuned by the Lagrangian parameter λ. The second
constraint on the adjustment stage is to be sparse block-
band matrix, which is easy to compute with small number
of taps. The optimal solution of the optimization problem of
Equation (12) consists in the A? matrix that leads to the the
original DST-VII S7 expressed as follows

A? = Λ · C2 · Γ · S7, (13)

with E(A?) and ||A? ·A? T−I||22 terms are both equal to zero.
We applied Equation (13) to compute A? matrix for N = 8
with values multiplied by 2β (with β the bit-depth set to 7
bits) and rounded to the nearest integer Ã8,8

Ã?8,8 =



127 11 −6 4 −2 2 −1 0
−10 125 20 −10 6 −4 2 −1

6 −16 122 30 −13 7 −4 1
−4 10 −22 118 39 −15 7 −2
4 −8 14 −27 114 47 −15 4
−3 7 −11 18 −32 110 53 −10
3 −6 10 −15 23 −38 109 47
−2 4 −7 10 −15 22 −39 118


.

However, the A∗ solution is not appropriate as it does not
provide integer values, as required for video coding applica-
tions, and does not reveal a sparse property, leading to fewer
arithmetic operations. Ã?8,8 has its most significant absolute
values around the diagonal and lower absolute values are
located at lower-left and upper-right parts of the matrix. This
property of the adjustment matrix A is stronger for adjustment
matrices of higher sizes N ∈ {16, 32}.

In this paper, adjustment band matrix that minimizes the
trade-off between error and orthogonality is sought with the
constraint of A to include few integer values different from
zero. This discrete constrained optimization problem is ex-
pressed as follows

minimize
A

E(A) + λO(A),

subject to Ai,j = 0, ∀ j > i+ bθ/2c,
Ai,j = 0, ∀ j ≤ i− dθ/2e,
i, j ∈ {1, . . . , N}2,
Ai,j ∈ Z ∩ [−2β + 1, 2β ],

λ ∈ R+.

(14)

It has been shown in [43] that the DST-VII is optimal in terms
of energy packing for image intra-predicted residuals. Indeed,
those residuals have an auto-correlation matrix which is tri-
diagonal matrix Rx of size N×N expressed by Equation (15).

Rx i,i = b, Rx i,i+1 = c, Rx j−1,j = a, Rx N,N = b− α,
(15)

with (a, b, c, α) = (−1, 2,−1, 1) and 1 ≤ i < N , 1 < j ≤
N The eigen-vectors of the matrix Rx are the basis of the
DST-VII transform [9]. Therefore, for the approximation of
the DST-VII, we propose to weight the relative importance
of the approximation basis with the eigen-values of the of
the auto-correlation matrix Rx. This gives more importance
to the lower frequency range where an important part of the
signal energy stands. According to [44] the eigen-values are
computed as follows

ωi = b+ 2
√
a c cos

(
2 i π

2N + 1

)
, i = 1, . . . , N. (16)

C. Genetic Search Algorithm

To provide an approximation of the DST-VII, the ad-
justment matrix, which consists of a selected number θ of
integer values around the diagonal, need to be determined
for a desired level of orthogonality O(A) expressed in Equa-
tion (12). To solve this problem in the integer domain, con-
tinuous optimization methods such as gradient descent are
not appropriate. Also, an exhaustive search would result in
evaluating

(
2β+1 + 1

)θ N
combinations (β is the bit-depth

set to 7 bits). Techniques such Integer Programming [45]
can provide helpful techniques in that context. However, in
this study, a genetic algorithm approach was preferred as it
provided satisfactory results and appeared to converge well.

Genetic algorithms, are easily re-configurable to address
various scenarios such that the adjustment matrix with differ-
ent number of coefficients per row. Indeed, this optimization
algorithm solves Equation (12) with θ N parameters with the
same strategy. Basically, it consists in changing individual
elements of the adjustment matrix in the mutation process.
Although convergence is not guaranteed with the Genetic
Algorithm approach, it appears in practice that it converges
in a consistent fashion with different initialization points.
The principle of the genetic search is the following:

• From a set of Np selected adjustment matrices, called
parents, Nc children are created by individual changes in
the close-to-diagonal values. One among the children’s
values, randomly selected, is changed by the addition
of +/-1 while ensuring that the value remain in the
adjustment matrix bit-depth range.

• The resulting NpNc adjustment candidate matrices are
evaluated with Equation (12), this can be done in parallel,
e.g. using OpenMP programming interface [46].

• From the candidate matrices, Np − 1 are randomly re-
tained, and the best performing matrix that minimizes the
trade-off between error and orthogonality is kept. From
these Np matrices the three steps are re-iterated until
convergence of the algorithm.
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As the A matrices have coefficients around the diagonal,
the number of parameters depends on the the matrix size and
the number of coefficients per row θ. It is in the range of
θ N , each coefficient is to be expressed on β bits to allow
implementation on fixed-point devices. The convergence is
measured in terms of stabilization of the algorithm, when
there is no further reduction of the optimized metric after
many iterations. The λ value is modified in order to provide
different solutions in the approximation / orthogonality space.
It is essential in video coding to provide transforms with a
reconstruction level, sufficiently low, to avoid the introduction
of distortion in the transform process. Subsequently, λ needs
to be chosen in a way that the orthogonality measure O(A)
is in the range of −60 dB, the same orthogonality level than
the discrete DCT-II used in VVC.
For this work, coefficients of 5 tap sparse block-band adjust-
ment matrices θ = 5 are used with an additional constraint of
symmetry across the diagonal between non-zero coefficients

Aj,i = −Ai,j , ∀ j = i+ 1, i ∈ {1, 2, . . . , N − 1},
Aj,i = Ai,j , ∀ j = i+ 2, i ∈ {1, 2, . . . , N − 2}.

(17)

The value θ = 5 is selected since it achieves a good trade-off
between complexity and approximation of the original DST-
VII transform. The symmetric property reduces the memory
storage of the adjustment matrix, and enables a faster conver-
gence of the Genetic algorithm.

64 62 60 58
O (dB)

33.5

33.0

32.5

32.0

31.5

31.0

30.5

E 
(d

B)

 = 4
 = 5 + Symmetry
 = 5
 = 6

Fig. 3. Performance of approximate DST-VII transform N = 32.

Figure 3 illustrates the error and orthogonality performance
of the proposed solution for different θ values. The config-
uration highlighted in black, enabling the desired level of
orthogonality around −60 dB and symmetry of coefficients
with θ = 5, is selected for hardware implementation and its
coding performance is assessed under the VVC Test Model
(VTM) 3.0 software.

IV. 2D HARDWARE IMPLEMENTATION OF TRANSFORM
MODULE

As expressed in Equation (9) giving the relations between
DCT-II types, the approximations of forward and inverse DST-
VII are performed by applying adjustment stages to inverse

DCT-II CT2 and the forward DCT-II C2, respectively. In the
following we detail the implementation of the main DCT-
II forward and inverse transforms, which are then used to
approximate 2D forward and inverse DST-VII and DCT-VIII
transforms.

A. Unified Forward and Inverse DCT-II Core Transform

In this section the CN2 corresponds to the N-point DCT-
II matrix with N ∈ {4, 8, 16, 32}. The DCT-II and IDCT-
II N-point kernels are computed by Equations (18) and (19),
respectively

CN2 = PN ·
(
C
N/2
2 0
0 ON/2

)
·
(

IN/2 JN/2

−JN/2 IN/2
)
, (18)

[CN2 ]T =

(
IN/2 −JN/2
JN/2 IN/2

)
·
(

[C
N/2
2 ]T 0
0 O′N/2

)
· PN , (19)

where PN is a permutation matrix to reorder the output data
in appropriate form, CN/22 is the DCT-2 of size N/2, ON/2

is a matrix of size N/2×N/2 consisting of odd rows of the
first N/2 columns of the CN2 matrix. IN/2 and JN/2 are,
respectively, the identity and the cross-identity (reflection)
matrices of size N/2×N/2. Finally, O′N/2 is a matrix of size
N/2×N/2 consisting of odd rows of the first N/2 columns
of the [CN2 ]T matrix.
Comparing ON/2 and O′N/2, we notice that for i from 1 to
N/2, ON/2 ith column has the same coefficients than the N/2-
ith column of O′N/2 but in inverse order. Subsequently, O′N/2

can be implemented using the same architecture than ON/2.
This can be achieved with computationally trivial steps, by
inverting the inputs and outputs orders. As a result, a unified
architecture design is proposed to embed forward and inverse
DCT-II sharing the same N×N odd part of the CN2 matrix,
which is the most complex part.
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Y(N/2)

Y(N/2-1)

Y(0)
Y(1)

Y(N-2). .
 . 

. .
 .

C2N/2

ON/2

Fig. 4. Proposed architecture of recursive CN
2 implementation with N=8, 16

and 32.

Therefore, benefiting from recursion property as presented
in Fig. 4, the same principle is applied for lower block sizes
to deepen the hardware sharing in the unified circuit.In terms
of required number of operations, the state of the art 32-point
butterfly forward and inverse DCT-II implementation requires
680 multiplication operations according to TABLE I for both
DCT-II and Inverse DCT-II. The proposed architecture of the
unified DCT-II and IDCT-II requires only 344 multiplication

Acc
ep

ted
 M

an
us

cri
pt



IEEE 2019 7

TABLE III
COMPUTATIONAL COMPLEXITY OF THE PROPOSED FORWARD AND INVERSE DCT-II AND APPROXIMATE DCT-VIII AND DST-VII IMPLEMENTATIONS

Transforms
4-point 8-point 16-point 32-point

+ × >> + × >> + × >> + × >>

DCT-II butterfly [19], [21], [23] 16 8 – 56 40 −− 200 168 −− 744 680 −−
Forward matrix multiplication 24 32 −− 112 128 −− 480 512 −− 1984 2048 −−
Proposed DCT-II 16 8 −− 36 24 −− 92 88 −− 332 344 −−
Proposed Approx DST-VII 24 32 −− 112 128 −− 51 58 9 112 114 30

operations: 256 (odd part) plus 88 (even part) multiplication
operations of C16

2 /[C16
2 ]T ).

Recursion property and reusing the same architecture of dif-
ferent odd-part matrices in a unified DCT-II/IDCT-II scheme
enable considerable reduction in logic resource and allow
preserving 256, 64 and 16 multiplication operations respec-
tively for 32, 16 and 8-point designs. TABLE III details the
computational complexity of the proposed architecture design
for different block sizes from 4 to 32 considering forward
and inverse processes. Moreover, multiplication operations are
performed using the Library of Parametrized Modules (LPM)
IP Cores multipliers offered by DSP blocks of the Arria 10
FPGA device. Fig. 6 illustrates the proposed architecture of
the unified DCT-II/IDCT-II core transform.

From equations (18) and (19), and benefiting from butterfly
decomposition architecture, the difference between DCT-II
and IDCT-II is the hierarchical application of the associate but-
terfly block; as a first or last stage for forward and inverse pro-
cesses, respectively, depending on Forward-Inverse selection
signal. For the IDCT [C32

2 ]T computation, the 32-odd part is
computed as O′16. Trivial pre-processing and post-processing
steps on its associated inputs and outputs are applied with no
additional computing complexity. The obtained results of the
[C16

2 ]T implementation (16-point IDCT-II) outputs go through
IDCT-II butterfly stage in order to provide the final IDCT-II
32-point outputs.
O′16 implementation requires 16 clock cycles where all mul-
tiplications are performed at one clock cycle using LPM
multipliers, then adder trees (with two addition operations)
are placed sequentially to generate the output. The pipeline
installed consists in introducing assignment stages. They are
based on registers and have basically two roles: storing the
current results and transferring the appropriate data and in-
termediate signals to the next stage. These components are
responsible for the pipeline operation avoiding data conflicts
or loss which may occur in the next clock cycles as inputs are
refreshing [29].

Fig. 5 presents a timing diagram of 1D IDCT-II computation
of 32×32 input block. It details the different steps and latency
required to generate 1D output results. In the case forward
DCT-II (Forward-Inverse is equal to 0), the 32-point odd part
is computed as O16. Then the obtained results together with
the C16

2 multiplication (16-point DCT-II) ones form the final
outputs of 32-point DCT-II. The design is not only unified for
forward and inverse DCT, but also for all block sizes from 4
to 32 through a size dependent selection process.
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Fig. 5. Timing diagram of 1D IDCT-II 32×32 block computation

B. Hardware Architecture of Adjustment Stages

As explained in Section III-A, the approximation method is
based on DCT-II architecture and diagonal-sparse orthogonal
adjustment matrices with low computational complexity. These
latter are generated using the genetic algorithm detailed in
Section III-C.

In this work we consider 16 and 32 approximation orders as
they are the most complex cases. 16 and 32-point adjustment
matrices of DST-VII are 5 tap sparse block-band matrices.
As illustrated in Fig. 7, the adjustment matrices are placed
and used as a pre-processing stage in the forward transform
process, and a post-processing stage in the inverse one.
With a maximum of 5 coefficients per row, it would require
80 and 160 multiplications for 16 and 32-point orders, re-
spectively. However, it is worth noting that not all adjustment
matrix rows include five coefficients, and coefficients with
power-of-two values are implemented using shift operations,
which would further reduce the number of required multipliers.

The symmetry property of the adjustment matrix A ex-
pressed by Equation (17) enables using the same coefficients
to perform the multiplication by its inverse AT in the post
processing stage of the inverse DST-VII. Therefore, we can
use the same implementation of the adjustment matrices
in both forward and inverse transform processes and half
of associated computational complexity is preserved. Then,
as the approximation approach consists in using the DCT-
II architecture, DST-VII implementation requires only the
number of operations included by the adjustment matrices
implementation over the DCT-II ones. The approximate DCT-
VIII Ĉ8 is obtained easily using approximate DST-VII Ŝ7

architecture with only some changes in input and output
order and signs as expressed in Equation (8). Therefore, the
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A
dj

us
tm

en
t s

ta
ge

 

Forwared DST-VII transform

Inverse DST-VII transform

U
ni

fie
d 

D
C

T-
II

 &
 ID

C
T-

II
 

tra
ns

fo
rm

 b
lo

ck

Fig. 7. 1 D approximate DST-VII transform scheme using the pre/post
processing stages

approximate DCT-VIII transform requires almost no hardware
resource (except one multiplexer) and does not introduce
additional computational complexity. TABLE III shows the
computational complexity required for the proposed DCT-II,
and approximate DCT-VIII and DST-VII implementations for
both forward and inverse operations. Approximation through
adjustment stages is used for 16 and 32-point orders because
they are the most complex cases. For 4 and 8-point DST-VII,
straightforward matrix multiplication is used as presented in
TABLE III.

C. Proposed 2D Implementation of VVC Transform Approxi-
mation

Using property of separable transforms, the 2D process
could be computed by the row-column decomposition tech-
nique in two distinct stages. First, a 1-dimensional unit is
performed for each column of the input matrix to generate the
intermediate output. This unified circuit enables the computa-
tion of DCT-II, approximate DCT-VIII or DST-VII depending
on the selected transform type as illustrated in Fig. 9. Once the

first N intermediate 1D outputs are available, they are scaled
and stored in N Dual-Port RAM (16×512 i.e 16×32×16) at
a column order (IntermOu 0 0 .. IntermOu 0 31). Fig. 8
shows the structure of the transposition memory.

0
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ROW30

ROW 31

...

...

...

...

15 16 31 511
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... ... ... ...
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Fig. 8. Architecture of the transposition memory with 32 Dual-Port RAMs.
Data can be written at a column basis and read at a row basis

After storing the outputs of the N columns, the first block
memory (RAM0) will contain the first results computed from
each column. For N = 32, data of RAM0 output port buffer
will be the concatenation of all first output values from every
processed column (32 values of 16 bits each: IntermOu 0 0
.. IntermOu 31 0). The advantage of using dual port RAMs
enables reading the 32 values with a single reading signal. The
same principle is used to secure the storage process in RAM1
to RAM31. As a result, considering 32×32 1D intermediate
output matrix, assigning consecutive r ena signals for the 32
RAMs sequentially, leads to automatically transpose the results
and fed them as inputs to the same 1D architecture in order to
generate the desired 2D output. The proposed 2D circuit is able
to efficiently compute approximate DST-VII and DCT-VIII
transforms using a unified 1D forward-inverse DCT-II core
transform and adjustment stages circuit. Moreover, it is unified
for both 16 and 32 block sizes and reconfigurable to perform
either forward or inverse transform processes. Input and output
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First In First Out (FIFO) memory blocks are added in both
ends of the design, each of size 16 Kbits (16×32×16), to store
and display input and output vectors. Moreover, a control unit
according to a state machine is defined. It enables assigning
the appropriate signals and blocks, and control reconfiguration
aspects. In addition, it manages the different steps of 2D
pipeline process.

V. EXPERIMENTAL AND SYNTHESIS RESULTS

A. Experimental setup

The coding and complexity performance of the proposed
approximate solution are investigated in this section under
the VVC Common Test Condition (CTC). Those experiments
are tested among mandatory video classes, where each class
corresponds to a specific resolution (up to 4K video) and
video content characteristic (with computer generated and
visio-conference materials). The proposed approximate DST-
VII and DCT-VIII have been integrated in the VTM draft
3.0 reference software [47]. The BD-BR metric is used to
assess the coding performance over four bitrates between two
coding configurations giving the bitrate gain/loss (−/+) in
percentage for similar PSNR quality. The encoder and decoder
run times are also drown to assess the complexity of the
proposed approximations.
On the other hand, for this work, hardware implementation of
the transforms is also done using the Verilog HDL description
language. The architectures of 1D and 2D processes of differ-
ent orders have been tested with state of the art simulation and
synthesis software tools [48], [49] under Arria 10 Systems on
Chips (SoC) FPGA device [50]. Test bench files were used to
validate the output results.

B. Rate Distortion Coding Performance

TABLE IV gives the coding and complexity performance is
terms of both BD-BR and run time of the proposed solution.

The encoding (EncT ) and decoding (DecT ) run times are also
compared in percentage to the anchor VTM3.0 [51]. This latter
uses the HEVC DCT-II up to size 64 together with DST-VII
and DCT-VIII core transforms for MTS, up to size 32, imple-
mented as matrix multiplications. From TABLE IV, it is shown
that the proposed approximations of the DST-VII and DCT-
VIII introduce slight coding loss of 0.15% in average for the
luminance component (Y), and 0.09% for the two chrominance
components (U and V) in AI coding configuration. Overall,
we can conclude that the coding performance remains similar
to the anchor for RA and Low Delay B (LDB) Inter coding
configurations.

The encoding and decoding run times slightly decrease with
the approximate DST-VII and DCT-VIII in AI configuration,
while they remain constant in RA and LDB configurations.
These results can only support the effectiveness of the pro-
posed VVC transform approximation method. In fact, the gain
in number of multiplications and additions enabled by the
approximate transforms through adjustment matrices is low
in the context of the VTM software, which includes other
time consuming operations. However, this gain in number of
operations as well as in memory usage has a significant impact
in the context of hardware implementation on FPGA platforms
with limited logic and memory resources.

C. Synthesis Results and Discussion

Since MTS approximation is based on DCT-II architecture,
TABLE V presents the area consumption of some related
works for 1D 32-point forward DCT-II implementation on
different platforms. In this paper a unified forward and inverse
DCT-II design is proposed. Thus, regarding information given
in TABLE V it would consider twice the required hardware
cost. In addition, for further fair evaluation, we will focus
more on [29] work which provided both DCT-II and DST-VII
implementations without approximation on the same FPGA
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TABLE IV
PERFORMANCE (%) IN TERMS OF BD-BR AND RUN TIME COMPLEXITY OF APPROXIMATE DST-VII AND DCT-VIII

Classes All Intra Main 10 Random Access Main 10 Low Delay B Main 10
Y U V EncT DecT Y U V EncT DecT Y U V EncT DecT

A1 0.15 0.11 0.14 93 80 0.12 0.31 0.27 99 97 − − − − −
A2 0.22 0.12 0.08 95 84 0.09 0.21 0.23 99 98 − − − − −
B 0.14 0.14 0.20 94 84 0.10 0.31 0.17 99 98 0.07 -0.22 0.11 100 101
C 0.06 0.00 -0.05 95 89 0.07 -0.06 0.35 99 100 0.06 0.15 0.35 100 100
E 0.18 0.10 0.06 94 86 − − − − − 0.06 0.81 -0.11 100 97

Average 0.15 0.09 0.09 94 85 0.09 0.19 0.25 99 98 0.06 0.16 0.14 100 100

TABLE V
AREA CONSUMPTION OF SOME 1D 32-POINT BUTTERFLY DCT-II

IMPLEMENTATIONS ON DIFFERENT PLATFORMS

Transform Dimention Technology Area consumption
DCT-II [40] 1D forward Xilinx Sparta 18772 (LUT)
DCT-II [19] 1D forward TSMC 90nm 253 (Kgate)
DCT-II [29] 1D forward Arria 10 Soc 11231 (Alm)

target device with similar pipelining approach as used in the
proposed work.
TABLE VI provides more detailed hardware synthesis results
of 16 and 32-point DCT-II and DST-VII implementations
proposed in [29]. Results presented in TABLE VI show that
the proposed design provides good performance in terms of
processed frames per second up to 135 and 361 of 4K videos
for 16 and 32-point modules, respectively. It can also be
noticed that 32-point module implementation requires about
3 to 5x hardware resources than 16-point one.

TABLE VI
SYNTHESIS RESULTS OF THE 1D 16 AND 32-POINT DCT-II AND

DST-VII [29]

16-point 32-point
DCT-II DST-VII DCT-II DST-VII

Alms 2428(1%) 5981(2.5%) 11231(4.5%) 22794(9%)

Reg. 14041(4%) 50135(15%) 76711(22.5%) 186418(55%)

DSPs 84(5%) 186(11%) 276(16%) 681(40%)

Freq. 401 MHz 268 MHz
Cycles 61 61
2K 541 fps 1440 fps
4K 135 fps 361 fps

Otherwise, logic resource would be 6x or more and then
exceed the target device range. This technique is used in
the proposed work without affecting the computational design
performance. Furthermore, information given in TABLE VI
refers only to requirements for forward transform configu-
ration. This is only to have an idea on the complexity and
required resources of hardware implementation of the MTS.
On the other hand, the implementation of the approximation
method, aims to maintain the desirable high performance while
keeping minimal logic utilization. TABLE VII presents the
synthesis results of the proposed unified forward/inverse DCT-
II core transform. This latter, configured to operate as Forward
or Inverse DCT-II, will be used in DST-VII and inverse DST-
VII implementations using adjustment stages.

The second part (right) of TABLE VII gives the synthesis
results of the 1D DST-VII approximation implementation. It

TABLE VII
SYNTHESIS RESULTS OF THE UNIFIED 1D 32-POINT DCT CORE

TRANSFORM AND THE PROPOSED ARCHITECTURE OF APPROXIMATE
FORWARD-INVERSE DST-VII AND DCT-VIII

DCT-II / IDCT-II Approximation design
16-point 32-point 16-point 32-point

Alms 16505 (7%) 23199 (9%)
Registers 51862 (15%) 69226 (20%)
DSPs 328 (20%) 500 (30%)
Frequency 308 MHz 316 MHz
Cycles 46 85 55 95
Frame rate (2K) 551 fps 1205 fps 472 fps 1095 fps
Frame rate (4K) 137 fps 300 fps 118 fps 273 fps

embeds the DCT-II core transform and then the additional
complexity introduced by adjustment stages can be interpreted
or deducted as the difference between DCT-II transform core
and DST-VII approximation results. Finally, the synthesis
results of the unified 2D approximation circuit are summarized
in TABLE VIII. The low computational complexity introduced
by adjustment stages will have a high impact on the design
performance. We can notice that the larger block size is, the

TABLE VIII
SYNTHESIS RESULTS OF THE UNIFIED 2D IMPLEMENTATION DESIGN OF

32-POINT FORWARD-INVERSE DCT-II AND APPROXIMATE DST-VII AND
DCT-VIII

DCT-II / IDCT-II App. DST-VII / DCT-VIII
16-point 32-point 16-point 32-point

Alms 26130 (10%) 31421 (12%)
Registers 62109 (18%) 75553 (22.5%)
DSPs 328 (20%) 500 (30%)
Memory 64 Kbits (<1%) 64 Kbits (<1%)
Frequency 225 MHz 228 MHz
Cycles 95 175 115 196
Frame rate (2K) 194 423 163 386
Frame rate (4K) 49 fps 105 fps 41 fps 96 fps

higher frame rate performance is as long as the pipeline is
going deeper with more rows to compute. Thus, the proposal
is able to sustain 2K and 4K video processing at 386 and
96 frames per second, respectively. Moreover, it requires only
12% of Alms, 22% of registers and 30% of DSP blocks offered
by the target device.

It should be noted that the proposed design is configured to
compute one transform type at a time in both sides (encoder
and decoder). At the encoder, pixels are processed many times
through the rate distortion optimization process which would
affect the measured throughput in fps. On the other hand,
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TABLE IX
COMPARISON OF DIFFERENT 2D HARDWARE TRANSFORM DESIGNS

Solutions [23] [25] [27] [29] Proposed
Technology 28 nm FPGA 40 nm FPGA ME 20 nm FPGA ME 20 nm FPGA ME 20 nm FPGA
Area cons. (Alms) −− 5292 3654 133017 36766
DSPs 128 −− 32 1561 738
Frequency (Mhz) 222 167 458 147 228
Throughput (fps) 3840×2160p30 3840×2160p30 3840×2160p18 1920×1080p50 3840×2160p96

Transform unit

4×4, 8×8,
16×16, 32×32

4×4, 8×8 4×4,8×8,
16×16,32×32

4×4,8×4,16×4,32×4,
4×8,8×8,16×8,32×8,

4×16,8×16,16×16,32×16,
4×32,8×32,16×32, 32×32

4×4, 8×8, 16×16,
32×32

Transform type DCT-II
DCT-II, DST-I,

DST-VII,
DCT-VIII, DCT-V

DCT-II, DST-VII,
DCT-VIII

DCT-II, DST-I,
DST-VII,

DCT-VIII, DCT-V

DCT-II, DST-VII,
DCT-VIII

Dimension 2D 2D 2D 2D 2D
Process Forward Forward Forward Forward Forward + Inverse

computing two different transform types in parallel would be
an alternative way of further optimization, especially that the
presented solution is a low hardware area consuming. Then,
the actual throughput in the encoder could be increased.

A fair comparison with other works in literature is quite
difficult. Most of works are focusing on the 2D-HEVC DCT-
II. There are only few works related to MTS hardware im-
plementation. TABLE IX summarizes the key parameters to
compare the proposed unified design performance with state
of the art works. Work in [25] involves 5 transform types but
is restricted to only 4×4 and 8×8 block sizes reaching 30 fps
for 4K video coding. Work in [27] presents also an interesting
2D implementation of MTS module regarding hardware cost.
It is unified for all block sizes from 4×4 to 32×32 but is
not able to support real time coding for 4K videos. Work
in [29] is considered as the first 2D MTS implementation
supporting 5 transform types and all block sizes (including
rectangular ones) from 4 to 32. However, it is drawback is the
high usage of logic resource. Finally, all these works consider
only forward transform process.

On the other hand, it is worth noting that the proposed
design enables both forward and inverse transform processes.
In fact, associated with the DCT/ IDCT-core transform, the
unified circuit is able to compute 2D forward and inverse
implementation for DCT-II, approximate DST-VII and DCT-
VIII transform types supporting all sizes from 4×4 to 32×32
unlike the other works presented in TABLE IX. As a result,
considering this fact would require twice their results. More-
over, as it is mentioned above, the low additional hardware
requirements of forward and inverse DST-VII architectures
(for 4×4 and 8×8 sizes through matrix multiplication) can
be noticed in area consumption and DSP blocks used for the
proposed work (TABLE VIII and TABLE IX). Furthermore,
the proposed solution is able to sustain 4K video processing at
96 frames per second requiring only moderate hardware cost
of the target device.

VI. CONCLUSION

In this paper we have proposed the approximation method
adopted for hardware implementation of forward and inverse
MTS concept of VVC standard. It consists in applying low cost

adjustment stages to a DCT-II variant in order to approximate
DST-VII and DCT-VIII transform types. An efficient hardware
implementation of approximate VVC transform process is also
proposed. The 32-point 1D architecture allows the processing
of 4K videos at 273 frames per seconds. It embeds a re-
configurable and pipelined DCT-II core transform to compute
forward and inverse DCT-II sharing the most logic consuming
part. The proposed unified 2D implementation design can
compute forward and inverse DCT-II, DST-VII and DCT-VIII
approximation while using only moderate hardware resource
of the target device. The unified circuit is able to sustain 2K
and 4K video processing at 386 and 96 frames per second,
respectively.

Future works will aim to include 64 transform order for
DCT-II. Moreover, rectangular block sizes would be consid-
ered with hopefully similar performance results.
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APPENDIX A
16-POINT ADJUSTMENT MATRIX WITH θ = 5





128 4 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
−4 128 8 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −8 127 10 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 −10 127 14 0 0 0 0 0 0 0 0 0 0 0
0 0 2 −14 126 16 1 0 0 0 0 0 0 0 0 0
0 0 0 2 −16 126 16 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −16 125 24 −1 0 0 0 0 0 0 0
0 0 0 0 0 2 −23 123 26 1 0 0 0 0 0 0
0 0 0 0 0 0 6 −25 124 19 2 0 0 0 0 0
0 0 0 0 0 0 0 3 −19 125 21 2 0 0 0 0
0 0 0 0 0 0 0 0 1 −21 124 24 3 0 0 0
0 0 0 0 0 0 0 0 0 2 −24 123 27 3 0 0
0 0 0 0 0 0 0 0 0 0 2 −27 121 31 5 0
0 0 0 0 0 0 0 0 0 0 0 4 −31 119 35 2
0 0 0 0 0 0 0 0 0 0 0 0 4 −34 117 39
0 0 0 0 0 0 0 0 0 0 0 0 0 9 −38 122

APPENDIX B
32-POINT ADJUSTMENT MATRIX WITH θ = 5, COLUMNS FROM 1 TO 16





128 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 128 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −3 128 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −4 128 5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −5 128 7 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −7 128 8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −8 127 9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −9 127 11 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −11 127 12 1 0 0 0 0 0
0 0 0 0 0 0 0 1 −12 127 14 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −14 126 15 1 0 0 0
0 0 0 0 0 0 0 0 0 1 −15 126 16 1 0 0
0 0 0 0 0 0 0 0 0 0 1 −16 126 16 1 0
0 0 0 0 0 0 0 0 0 0 0 1 −16 126 18 1
0 0 0 0 0 0 0 0 0 0 0 0 1 −18 125 20
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −20 125
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −21
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

APPENDIX C
32-POINT ADJUSTMENT MATRIX WITH θ = 5, COLUMNS FROM 17 TO 32





0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 22 2 0 0 0 0 0 0 0 0 0 0 0 0 0
−22 124 23 2 0 0 0 0 0 0 0 0 0 0 0 0
2 −23 123 25 3 0 0 0 0 0 0 0 0 0 0 0
0 2 −25 123 26 3 0 0 0 0 0 0 0 0 0 0
0 0 3 −26 122 27 3 0 0 0 0 0 0 0 0 0
0 0 0 3 −27 122 28 3 0 0 0 0 0 0 0 0
0 0 0 0 3 −28 121 29 4 0 0 0 0 0 0 0
0 0 0 0 0 3 −29 121 30 4 0 0 0 0 0 0
0 0 0 0 0 0 4 −30 120 32 5 0 0 0 0 0
0 0 0 0 0 0 0 4 −32 119 34 5 0 0 0 0
0 0 0 0 0 0 0 0 5 −34 118 34 5 0 0 0
0 0 0 0 0 0 0 0 0 5 −34 118 36 6 0 0
0 0 0 0 0 0 0 0 0 0 5 −36 117 37 6 0
0 0 0 0 0 0 0 0 0 0 0 6 −37 117 36 6
0 0 0 0 0 0 0 0 0 0 0 0 6 −36 116 41
0 0 0 0 0 0 0 0 0 0 0 0 0 6 −41 121
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