M. Ram, D. Bogdanov, A. Aghahosseini, A. Gulagi, A. S. Oyewo et al., Global Energy System based on 100% Renewable Energy -Energy Transition in Europe Across Power, Heat, Transport and Desalination Sectors. Study by, Lappeenranta University of Technology Research Reports, vol.89, pp.2243-3376, 2018.

, The future of cooling, 2018.

G. Cavazzini, Solutions For Pumped Hydro Energy Storage Plants, 2018.

A. Tallini, A. Vallati, and L. Cedola, Applications of micro-CAES systems: energy and economic Analysis

M. Mercangöz, J. Hemrle, L. Kaufmann, A. Z'graggen, and C. Ohler, Electrothermal energy storage with transcritical CO2 cycles; Energy, pp.407-415, 2012.

,

J. D. Mctigue and A. J. White, Markides; Parametric studies and optimisation of pumped thermal electricity storage, C.N

, Appl. Energy, p.137, 2015.

,

S. Georgiou, N. Shah, and C. N. Markides, A thermoeconomic analysis and comparison of pumped-thermal and liquid-air electricity storage systems

, Appl. Energy. in press, pp.1119-1133, 2018.

A. Dietrich, F. Dammel, and P. Stephan, Exergoeconomic Analysis of a Pumped Heat Electricity Storage System with Concrete Thermal Energy Storage, International Journal of Thermodynamics (IJoT), vol.19, issue.1, pp.43-51, 2016.

. Siemens-gamesa, Electric Thermal Energy Storage

E. Pujades, T. Willems, S. Bodeux, P. Orban, and A. Dassargues, Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow

,

B. Shell-internationale-research-maatschappij, V of Netherlands; Storage and recovery; Patent No 0196 690 granted 18/10/1989 by European Patent Office

J. Bi, T. Jiang, W. Chen, and X. Ma,

, Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment, Energy and Power Engineering, issue.5, pp.26-30, 2013.

, European Photovoltaic Solar Energy Conference and Exhibition

A. Odukomaiya, A. Abu-heiba, K. R. Gluesenkamp, O. Abdelaziz, R. K. Jackson et al.,

, Appl. Energy, vol.179, pp.948-960, 2016.

J. Johansson, Storage of highly compressed gases in underground Lined Rock Caverns -More than 10 years of experience; conference World Tunnel Congress, 2014.

J. Rutqvist, H. Kim, D. Ryu, and J. Synn, Won-Kyong Song; Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

. Gwahang-no, Korea; International Journal of Rock Mechanics & Mining Science, vol.52, pp.71-81, 2012.

H. Kim, J. Rutqvist, J. Jeong, B. Choi, and D. Ryu,

, Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage

,

H. Kim, D. Park, and D. Ryu, Won-Kyong Song; Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns

, Journal of Rock Mechanics and Geotechnical Engineering, vol.8, pp.314-328, 2016.

P. Perazzelli and G. Anagnostou, Design issues for compressed air energy storage in sealed underground cavities, Stefano Franscini Platz, vol.5, p.8093

S. Zurich, Journal of Rock Mechanics and Geotechnical Engineering, vol.8, pp.314-328, 2016.

J. Tunsakul, P. Jongpradist, and H. Kim, Pruettha Nanakorn

A. Geotechnica and ·. , , 2017.

,

R. Glamheden and P. Curtis, Excavation of a cavern for high-pressure storage of natural gas, Sodra Forstadsgatan, vol.26, p.43

, Tunnelling and Underground Space Technology, vol.21, pp.56-67, 2006.

S. Hannu, J. Laine, E. E. Salpakari, H. Looney, I. M. Savin et al., Meeting global cooling demand withphotovoltaics during the 21st century, 2019.

, Stanford scientists calculate the carbon footprint of grid-scale battery technologies, p.7, 2019.

. Energinet, Danish Energy Agency; Technology Data for Energy storage, 2018.

, Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage, Energy, vol.49, pp.484-501, 2013.