G. Leftheriotis, The vascular phenotype in Pseudoxanthoma elasticum and related disorders: contribution of a genetic disease to the understanding of vascular calcification, Front. Genet, vol.4, 2013.

A. A. Bergen, Mutations in ABCC6 cause pseudoxanthoma elasticum, Nat. Genet, vol.25, pp.228-231, 2000.

L. Saux and O. , Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum, Nat. Genet, vol.25, pp.223-227, 2000.

Q. Jiang, M. Endo, F. Dibra, K. Wang, and J. Uitto, Pseudoxanthoma elasticum is a metabolic disease, J. Invest. Dermatol, vol.129, pp.348-354, 2009.

R. S. Jansen, ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release, Proc. Natl. Acad. Sci. USA, vol.110, pp.20206-20211, 2013.

R. S. Jansen, ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report, Arterioscler. Thromb. Vasc. Biol, vol.34, pp.1985-1989, 2014.

D. Quaglino, F. Boraldi, G. Annovi, and I. Ronchetti, The Multifaceted Complexity of Genetic Diseases: A Lesson from Pseudoxanthoma Elasticum, Advances in the Study of Genetic Disorders, 2011.

G. Kranenburg, Arterial stiffening and thickening in patients with pseudoxanthoma elasticum, Atherosclerosis, vol.270, pp.160-165, 2018.

J. E. Sharman, P. Boutouyrie, and S. Laurent, Arterial (Aortic) Stiffness in Patients with Resistant Hypertension: from Assessment to Treatment, Current Hypertension Reports, vol.19, 2017.

S. Pingel, Increased vascular occlusion in patients with pseudoxanthoma elasticum, VASA, vol.46, pp.47-52, 2017.

L. Campens, Characterization of cardiovascular involvement in pseudoxanthoma elasticum families, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.2646-2652, 2013.

T. G. Gorgels, Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum, Hum. Mol. Genet, vol.14, pp.1763-1773, 2005.

T. Basting and E. Lazartigues, DOCA-Salt Hypertension: an Update, Curr. Hypertens. Rep, vol.19, p.32, 2017.

M. A. Garfinkle, Salt and essential hypertension: pathophysiology and implications for treatment, J Am Soc Hypertens, vol.11, pp.385-391, 2017.

J. F. Klement, Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues, Mol. Cell. Biol, vol.25, pp.8299-8310, 2005.

Y. Le-corre, Quantification of the calcification phenotype of Abcc6-deficient mice with microcomputed tomography, Am. J. Pathol, vol.180, pp.2208-2213, 2012.

H. Meng, Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through integrative genomics, Proc. Natl. Acad. Sci. USA, vol.104, pp.4530-4535, 2007.

D. P. Germain and . Pseudoxanthoma, Orphanet J Rare Dis, vol.12, p.85, 2017.

R. Bouchareb, Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism, J. Mol. Cell. Cardiol, vol.67, pp.49-59, 2014.

G. Kauffenstein, Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum, Arterioscler. Thromb. Vasc. Biol, vol.34, pp.1045-1056, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01738627

C. D. Rau, Mapping Genetic Contributions to Cardiac Pathology Induced by Beta-Adrenergic Stimulation in Mice, Circulation: Cardiovascular. Genetics, vol.8, pp.40-49, 2015.

C. Götting, Elevated xylosyltransferase I activities in pseudoxanthoma elasticum (PXE) patients as a marker of stimulated proteoglycan biosynthesis, J. Mol. Med, vol.83, pp.984-992, 2005.

G. A. Silberman, Uncoupled Cardiac Nitric Oxide Synthase Mediates Diastolic Dysfunction, Circulation, vol.121, pp.519-528, 2010.

F. Prunier, Pseudoxanthoma elasticum: cardiac findings in patients and Abcc6-deficient mouse model, PLoS ONE, vol.8, p.68700, 2013.

B. J. Van-varik, Mechanisms of arterial remodeling: lessons from genetic diseases, Front Genet, vol.3, p.290, 2012.

M. Van-gils, L. Nollet, E. Verly, N. Deianova, and O. M. Vanakker, Cellular signaling in pseudoxanthoma elasticum: an update, Cell. Signal, vol.55, pp.119-129, 2019.

M. J. Hosen, P. J. Coucke, O. Le-saux, A. De-paepe, and O. M. Vanakker, Perturbation of specific pro-mineralizing signalling pathways in human and murine pseudoxanthoma elasticum, Orphanet J Rare Dis, vol.9, p.66, 2014.

U. Diekmann, Elevated circulating levels of matrix metalloproteinases MMP-2 and MMP-9 in pseudoxanthoma elasticum patients, Journal of Molecular Medicine, vol.87, pp.965-970, 2009.

D. Quaglino, Dermal fibroblasts from pseudoxanthoma elasticum patients have raised MMP-2 degradative potential. Biochimica et Biophysica Acta (BBA) -Molecular Basis of Disease 1741, pp.42-47, 2005.

I. Faust, Characterization of dermal myofibroblast differentiation in pseudoxanthoma elasticum, Experimental Cell Research, vol.360, pp.153-162, 2017.

A. K. Ghosh and D. E. Vaughan, PAI-1 in tissue fibrosis, Journal of Cellular Physiology, vol.227, pp.493-507, 2012.

M. Sudol, From Rous sarcoma virus to plasminogen activator, src oncogene and cancer management, Oncogene, vol.30, p.3003, 2011.

T. Oka, Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling, Circ. Res, vol.101, pp.313-321, 2007.

J. T. Walker, K. Mcleod, S. Kim, S. J. Conway, and D. W. Hamilton, Periostin as a multifunctional modulator of the wound healing response, Cell Tissue Res, vol.365, pp.453-465, 2016.

M. Pauschinger, Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio, Circulation, vol.99, pp.2750-2756, 1999.

I. N. Mungrue, Abcc6 Deficiency Causes Increased Infarct Size and Apoptosis in a Mouse Cardiac Ischemia-Reperfusion Model, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, pp.2806-2812, 2011.

H. Orimo, The mechanism of mineralization and the role of alkaline phosphatase in health and disease, J Nippon Med Sch, vol.77, pp.4-12, 2010.

R. A. Albright, ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy, Nat Commun, vol.6, p.10006, 2015.

L. Jiang, Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis, Hypertension, vol.60, pp.1192-1199, 2012.

A. Harvey, A. C. Montezano, and R. M. Touyz, Vascular biology of ageing-Implications in hypertension, Journal of Molecular and Cellular Cardiology, vol.83, pp.112-121, 2015.

G. C. Silva, J. F. Silva, T. F. Diniz, V. S. Lemos, and S. F. Cortes, Endothelial dysfunction in DOCA-salt-hypertensive mice: role of neuronal nitric oxide synthase-derived hydrogen peroxide, Clinical Science, vol.130, pp.895-906, 2016.

J. Davignon and P. Ganz, Role of endothelial dysfunction in atherosclerosis, Circulation, vol.109, pp.27-32, 2004.

H. Peng, O. A. Carretero, M. E. Alfie, J. A. Masura, and N. Rhaleb, Effects of Angiotensin-Converting Enzyme Inhibitor and Angiotensin Type 1 Receptor Antagonist in Deoxycorticosterone Acetate-Salt Hypertensive Mice Lacking Ren-2 Gene, Hypertension, vol.37, pp.974-980, 2001.

J. L. Grobe, A. P. Mecca, H. Mao, and M. J. Katovich, Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension, American Journal of Physiology-Heart and Circulatory Physiology, vol.290, pp.2417-2423, 2006.

F. Ammarguellat, I. Larouche, and E. L. Schiffrin, Myocardial Fibrosis in DOCA-Salt Hypertensive Rats: Effect of Endothelin ET A Receptor Antagonism, Circulation, vol.103, pp.319-324, 2001.

B. Klanke, Blood pressure versus direct mineralocorticoid effects on kidney inflammation and fibrosis in DOCA-salt hypertension, Nephrology Dialysis Transplantation, vol.23, pp.3456-3463, 2008.

C. Brampton, The level of hepatic ABCC6 expression determines the severity of calcification after cardiac injury, Am. J. Pathol, vol.184, pp.159-170, 2014.

E. Wilde, Tail-Cuff Technique and Its Influence on Central Blood Pressure in the Mouse, J Am Heart Assoc, vol.6, 2017.

C. Brampton, Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum, Cell Cycle, vol.10, pp.1810-1820, 2011.

H. Cheng, Vascular aging and hypertension: Implications for the clinical application of central blood pressure, Int. J. Cardiol, vol.230, pp.209-213, 2017.

J. W. Bartstra, P. A. De-jong, and W. Spiering, Accelerated peripheral vascular aging in pseudoxanthoma elasticum -proof of concept for arterial calcification-induced cardiovascular disease, Aging, vol.11, pp.1062-1064, 2019.

L. D. Colantonio, ACC/AHA Blood Pressure Treatment Guideline Recommendations and Cardiovascular Risk, J. Am. Coll. Cardiol, vol.72, pp.1187-1197, 2017.

B. Williams, Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study, Circulation, vol.113, pp.1213-1225, 2006.