S. R. Abram, B. L. Hodnett, R. L. Summers, T. G. Coleman, and R. L. Hester, Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education, Advances in physiology education, vol.31, pp.202-212, 2007.

O. Bonny and A. Edwards, Calcium reabsorption in the distal tubule: regulation by sodium, pH, and flow, Am J Physiol Renal Physiol, vol.304, pp.585-600, 2013.

B. Braam, Overruled": the kidneys' judgment of sodium balance versus stabilization of renal function, Am J Physiol Renal Physiol, vol.316, pp.221-223, 2019.

M. Brezis, S. Rosen, P. Silva, and F. H. Epstein, Renal ischemia: a new perspective, Kidney Int, vol.26, pp.375-83, 1984.

T. J. Burke, D. Malhotra, and J. I. Shapiro, Factors maintaining a pH gradient within the kidney: role of the vasculature architecture, Kidney Int, vol.56, pp.1826-1863, 1999.

J. Chen, A. T. Layton, and A. Edwards, A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results, Am J Physiol Renal Physiol, vol.297, pp.517-553, 2009.

E. I. Christensen, B. Grann, I. B. Kristoffersen, E. Skriver, J. S. Thomsen et al., Threedimensional reconstruction of the rat nephron, Am J Physiol Renal Physiol, 2014.

W. H. Dantzler, A. T. Layton, H. E. Layton, and T. L. Pannabecker, Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle, Clin J Am Soc Nephrol, vol.9, pp.1781-1790, 2014.

A. Edwards, Modeling transport in the kidney: investigating function and dysfunction, Am J Physiol Renal Physiol, vol.298, pp.475-84, 2010.

A. Edwards, Regulation of calcium reabsorption along the rat nephron: a modeling study, Am J Physiol Renal Physiol, vol.308, pp.553-66, 2015.

A. Edwards and O. Bonny, A model of calcium transport and regulation in the proximal tubule, Am J Physiol Renal Physiol, vol.315, pp.942-53, 2018.

P. A. Friedman, Codependence of renal calcium and sodium transport, Annu Rev Physiol, vol.60, pp.179-97, 1998.

P. A. Friedman, Mechanisms of renal calcium transport, Exp Nephrol, vol.8, pp.343-50, 2000.

B. C. Fry, A. Edwards, I. Sgouralis, and A. T. Layton, Impact of renal medullary three-dimensional architecture on oxygen transport, Am J Physiol Renal Physiol, vol.307, pp.263-72, 2014.

D. Granjon, O. Bonny, and A. Edwards, A model of calcium homeostasis in the rat, Am J Physiol Renal Physiol, vol.311, pp.1047-62, 2016.

A. C. Guyton, T. G. Coleman, A. W. Cowley, J. Liard, J. F. Norman et al., Systems analysis of arterial pressure regulation and hypertension, Ann Biomed Eng, vol.1, pp.254-81, 1972.

A. C. Guyton, T. G. Coleman, and H. J. Granger, Circulation: overall regulation, Annu Rev Physiol, vol.34, pp.13-46, 1972.

K. M. Hallow, Y. Gebremichael, G. Helmlinger, and V. Vallon, Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis, Am J Physiol Renal Physiol, vol.312, pp.819-854, 2017.

K. M. Hallow, P. J. Greasley, G. Helmlinger, L. Chu, H. Heerspink et al., Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data, Am J Physiol Renal Physiol, 2018.

K. M. Hallow, A. Lo, and J. Beh, A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: Extending the Guyton model, Am J Physiol Regul Integr Comp Physiol, 2014.

B. Hargitay and W. Kuhn, Das Multipikationsprinzip als Grundlage der Harnkonzentrierung in der Niere, Zeitschrift für Elektrochemie, vol.55, pp.539-58, 1951.

B. Hargitay and W. Kuhn, The multiplication principle as the basis for concentrating urine in the kidney, J Am Soc Nephrol, vol.12, pp.1566-86, 2001.

S. Hervy and S. R. Thomas, Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model, Am J Physiol Renal Physiol, vol.284, pp.65-81, 2003.

R. L. Hester, A. J. Brown, and L. Husband, HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology, Front Physiol, vol.2, p.12, 2011.

J. F. Jen and J. L. Stephenson, Externally driven countercurrent multiplication in a mathematical model of the urinary concentrating mechanism of the renal inner medulla, Bull Math Biol, vol.56, pp.491-514, 1994.

F. Karaaslan, Y. Denizhan, and R. Hester, A mathematical model of long-term renal sympathetic nerve activity inhibition during an increase in sodium intake, Am J Physiol Regul Integr Comp Physiol, vol.306, pp.234-281, 2014.

F. Karaaslan, Y. Denizhan, A. Kayserilioglu, and H. O. Gulcur, Long-term mathematical model involving renal sympathetic nerve activity, arterial pressure, and sodium excretion, Ann Biomed Eng, vol.33, pp.1607-1637, 2005.

M. A. Knepper, G. M. Saidel, V. C. Hascall, and T. Dwyer, Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer, Am J Physiol Renal Physiol, vol.284, pp.433-479, 2003.

T. W. Kurtz, S. E. Dicarlo, and M. Pravenec, Testing Computer Models Predicting Human Responses to a High-Salt Diet, Hypertension, vol.72, pp.1407-1423, 2018.

A. T. Layton, W. H. Dantzler, and T. L. Pannabecker, Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter, Am J Physiol Renal Physiol, vol.302, pp.591-605, 2012.

A. T. Layton, A. Edwards, and V. Vallon, Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis, Am J Physiol Renal Physiol, vol.314, pp.643-57, 2018.

A. T. Layton and H. E. Layton, A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results, Am J Physiol Renal Physiol, vol.289, pp.1346-66, 2005.

A. T. Layton and H. E. Layton, Countercurrent Multiplication May Not Explain the Axial Osmolality Gradient in the Outer Medulla of the Rat Kidney, Am J Physiol Renal Physiol, 2011.

A. T. Layton, V. Vallon, and A. Edwards, A computational model for simulating solute transport and oxygen consumption along the nephrons, Am J Physiol Renal Physiol, vol.311, pp.1378-90, 2016.

H. E. Layton, M. A. Knepper, and C. L. Chou, Permeability criteria for effective function of passive countercurrent multiplier, Am J Physiol Renal, vol.270, pp.9-20, 1996.

C. Lee, B. S. Gardiner, R. G. Evans, and D. W. Smith, A model of oxygen transport in the rat renal medulla, American Journal of Physiology-Renal Physiology, vol.315, pp.1787-811, 2018.

R. F. Letts, X. Y. Zhai, and C. Bhikha, Nephron morphometry in mice and rats using tomographic microscopy, Am J Physiol Renal Physiol, vol.312, pp.210-239, 2017.

P. Meneton, J. Loffing, and D. G. Warnock, Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule, Am J Physiol Renal Physiol, vol.287, pp.593-601, 2004.

M. B. Moor and O. Bonny, Ways of calcium reabsorption in the kidney, Am J Physiol Renal Physiol, vol.310, pp.1337-50, 2016.

R. Moss, T. Grosse, I. Marchant, N. Lassau, F. Gueyffier et al., Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: towards individualized models of whole-body physiology, PLoS Comput Biol, vol.8, p.1002571, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02289808

R. Moss and S. R. Thomas, Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis, Am J Physiol Renal Physiol, vol.306, pp.224-272, 2014.

C. M. Nawata and T. L. Pannabecker, Mammalian urine concentration: a review of renal medullary architecture and membrane transporters, J Comp Physiol B, vol.188, pp.899-918, 2018.

C. R. Neal, K. P. Arkill, and J. S. Bell, Novel hemodynamic structures in the human glomerulus, Am J Physiol Renal Physiol, vol.315, pp.1370-84, 2018.

C. R. Neal, H. Crook, E. Bell, S. J. Harper, and D. O. Bates, Three-dimensional reconstruction of glomeruli by electron microscopy reveals a distinct restrictive urinary subpodocyte space, J Am Soc Nephrol, vol.16, pp.1223-1258, 2005.

C. R. Neal, P. R. Muston, and D. Njegovan, Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions, Am J Physiol Renal Physiol, vol.293, pp.1787-98, 2007.

D. A. Nordsletten, S. Blackett, M. D. Bentley, E. L. Ritman, and N. P. Smith, Structural morphology of renal vasculature, Am J Physiol Heart Circ Physiol, vol.291, pp.296-309, 2006.

T. L. Pannabecker, W. H. Dantzler, H. E. Layton, and A. T. Layton, Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla, Am J Physiol Renal Physiol, 2008.

J. L. Stephenson, Concentration of urine in a central core model of the renal counterflow system, Kidney Int, vol.2, pp.85-94, 1972.

J. L. Stephenson, Handbook of Physiology Section 8 Renal Physiology, vol.1992, pp.1349-408

J. L. Stephenson, Y. Zhang, and R. Tewarson, Electrolyte, urea, and water transport in a twonephron central core model of the renal medulla, Am J Physiol, vol.257, pp.399-413, 1989.

S. R. Thomas, Cycles and separations in a model of the renal medulla, Am J Physiol Renal, vol.275, pp.671-90, 1998.

S. R. Thomas, Inner medullary lactate production and accumulation: A vasa recta model, Am J Physiol Renal, vol.279, pp.468-81, 2000.

S. R. Thomas, Kidney Modeling and Systems Physiology, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.1, pp.172-90, 2009.

S. R. Thomas, A. T. Layton, H. E. Layton, and L. C. Moore, Kidney modelling: status and perspectives, Proceedings of the IEEE, vol.94, pp.740-52, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00339614

S. R. Thomas and A. S. Wexler, Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism, Am J Physiol, vol.269, pp.159-71, 1995.

S. C. Thomson, Nitric oxide mediates anomalous tubuloglomerular feedback in rats fed high-NaCl diet after subtotal nephrectomy, Am J Physiol Renal Physiol, vol.316, pp.223-253, 2019.

J. L. Walther, D. W. Bartlett, W. Chew, C. R. Robertson, T. H. Hostetter et al., Downloadable computer models for renal replacement therapy, Kidney Int, vol.69, pp.1056-63, 2006.

X. Wang, S. R. Thomas, and A. S. Wexler, Outer medullary anatomy and the urine concentrating mechanism, Am J Physiol, vol.274, pp.413-437, 1998.

A. M. Weinstein, Mathematical models of tubular transport, Annu Rev Physiol, vol.56, pp.691-709, 1994.

A. M. Weinstein, Insights from mathematical modeling of renal tubular function, Exp Nephrol, vol.6, pp.462-470, 1998.

A. M. Weinstein, Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty, Am J Physiol Renal Physiol, vol.284, pp.871-84, 2003.

A. M. Weinstein, A mathematical model of rat distal convoluted tubule (II): Potassium secretion along the connecting segment, Am J Physiol Renal Physiol, vol.289, pp.721-762, 2005.

A. M. Weinstein, A mathematical model of rat ascending Henle limb. III. Tubular function, Am J Physiol Renal Physiol, vol.298, pp.543-56, 2010.

A. M. Weinstein, Potassium excretion during antinatriuresis: perspective from a distal nephron model, Am J Physiol Renal Physiol, vol.302, pp.658-73, 2012.

A. M. Weinstein, A Mathematical Model of the Rat Nephron: Glucose Transport, Am J Physiol Renal Physiol, p.505, 2014.

A. M. Weinstein, A Mathematical Model of Rat Proximal Tubule and Loop of Henle, Am J Physiol Renal Physiol, vol.00504, 2014.

A. M. Weinstein, Systems biology of the cortical collecting duct, J Physiol, vol.594, pp.5733-5737, 2016.

A. M. Weinstein, A mathematical model of the rat kidney: K(+)-induced natriuresis, Am J Physiol Renal Physiol, vol.312, pp.925-50, 2017.

A. M. Weinstein, By the way, proximal tubule calcium transport, Am J Physiol Renal Physiol, vol.315, pp.908-917, 2018.

A. S. Wexler, R. E. Kalaba, and D. J. Marsh, Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results, Am J Physiol Renal, vol.260, pp.368-83, 1991.

L. Yang, S. Xu, and X. Guo, Regulation of renal Na transporters in response to dietary K, Am J Physiol Renal Physiol, vol.315, pp.1032-1073, 2018.

X. Zhai, J. S. Thomsen, H. Birn, I. B. Kristoffersen, A. Andreasen et al., Three-Dimensional Reconstruction of the Mouse Nephron, J Am Soc Nephrol, vol.17, pp.77-88, 2006.

X. Y. Zhai, H. Birn, K. B. Jensen, J. S. Thomsen, A. Andreasen et al., Digital Three-Dimensional Reconstruction and Ultrastructure of the Mouse Proximal Tubule, J Am Soc Nephrol, vol.14, pp.611-620, 2003.

W. Zhang and A. Edwards, Oxygen transport across vasa recta in the renal medulla, Am J Physiol Heart Circ Physiol, vol.283, pp.1042-55, 2002.