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Abstract

Introduction: In this paper, we studied the effect over time of agomelatine, an antidepressant drug
administered in patient with major depressive disorder, through item response theory (IRT), taking into
account a strong placebo effect and missing not at random data. We also assessed the informativeness of
the HAMD-17 scale’s item.

Materials and Methods: The data includes five phase III clinical trials sponsored by Servier Institute,
totalling 1549 patients followed during a maximum of 1 year. At each observation, individual scores for
the 17 items of the HAMD scale were recorded. The probability for each score was modelled with IRT.
A non-linear mixed effects model was used to describe the evolution of the disease and was coupled with
a time to event model to predict dropout. Clinical trial simulations were then used to compare placebo
and active treatment. Informativeness of each item was evaluated using the Fisher information theory.

Results: The best model combined an IRT model, a longitudinal model for underlying depression
which describes the remission and then a possible relapse, and a hazard model for dropout depending
on the evolution from baseline. The drug effect was best modelled as an effect on the remission and the
relapse phases. The median predicted drop in HAMD between baseline and 6 weeks was 8.8 (90% PI,
8.3-9.2) when on placebo and 13.1 (90% PI, 12.8-13.4) when treated. Nine items were found to be the
most informative.

Conclusion: The IRT framework allowed to characterise the evolution of depression with time and

estimate the effect of agomelatine, as well as the link between symptoms and disease.
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INTRODUCTION

Major depressive disorder (MDD), also known simply as depression, is a common but serious mental
disorder. According to the World Health organisation [1] (WHO), MDD is one of the leading causes of
disability worldwide, and affects more than 300 million people. It is characterised by mood, cognitive,
vegetative and psychotic symptoms which can persist through most of the day, nearly every day during
at least two weeks. Major depression is often thought of as an episodic disorder. Individuals who have
experienced earlier episodes will have an increased risk for a new episode of 16% [2]. Epidemiologic data [3]
showed that depression may strike at any time, but is most common later than the age of onset which is in
median in the early to mid 20s. Individuals who are separated or divorced [4] and women (two-fold increase
compared to men) [5] are at higher risk of major depression. The prevalence of the disease decreases with age
[4] in Western countries. According to the National Institute of Mental Health in USA, depression is caused
by combination of genetic, environmental, and psychological factors, which include personal or family history
of depression, major life changes, trauma, stress, as well as certain physical illnesses and medications. WHO
recommends psychotherapy or/and medications for the treatment of depression [1], but symptoms often
persist despite pharmacological treatment [6] showing the urgent need to find better therapeutic options.

Antidepressants drugs aim to correct imbalances of neurotransmitters in the brain that are described to
be responsible of mood and behaviour changes. The antidepressant agomelatine was marketed in Europe in
2009 for the treatment of major depressive episodes in adults [7]. It is thought to act through a combination
of antagonist activity at 5HT2C receptors and agonist activity at melatonergic MT1/MT2 receptors [7, 8].
Agomelatine has shown efficacy in MDD [9] while retaining a favourable tolerance profile, attributed in part
to a lack of interference with the reuptake of neurotransmitters like serotonin and dopamine [10]. Recent
meta-analyses [9, 10] have shown efficacy of agomelatine in MDD while considering published and unpublished
non-positive studies.

Clinical trials in depression face a number of challenges, reflecting the complex etiology and chronic
nature of the disease, the large subject to subject variability in expression and resilience to depression, and
the natural course of disease progression. Moreover a large placebo response is generally observed in trials
evaluating novel antidepressant treatments [11, 12]. The impact of depression on sleep, anxiety, mood, somatic
and psychotic components is captured through a multi-item symptom inventory composed of 17 items, the
Hamilton depression rating scale [13] (HAMD-17). HAMD-17 is used as the primary clinical outcome in
clinical trials on depression for its ability to cover the spectrum of depressive symptoms. However, this
multidimensionality also complicates the interpretation and detection of drug effects [14, 15], and alternative
scales more sensitive to a change due to the drug effect have been proposed [16, 17, 18, 19, 20]. Using an
appropriate scale, as well as extracting all possible information from the different items, improves the power
of clinical trials.

Recent publications have demonstrated, in a nonlinear mixed effect model (NLMEM) context, that the
use of the item response theory (IRT) framework allows an increase in the precision of composite score
estimation, and thus increases the power to detect a drug effect [21, 22]. IRT was first proposed in the 50s
for educational and achievement tests [23]. IRT is often used in the design of questionnaires by tailoring tests
through item selection. It is an important tool in psychometrics and is more and more used in healthcare field.
Combined with NLMEM, this methodology was first used in the context of Alzheimer disease [21, 24, 25, 26]
and also in other diseases such as multiple sclerosis [27], cognition [28], in mechanically ventilated preterm
neonates [29], Parkinson [30], schizophrenia [31], acute ischemic stroke [32] and migraine patients [33]. IRT
is a statistical framework aimed at characterising the relation between each component of a scale and an
individual ability/disability. In our study, each symptom in the HAMD-17 scale is used as a surrogate
measure of a latent variable measuring the depression. Combining IRT and NLMEM provides a useful

framework to characterise mathematically the relation between each symptom and the latent variable, model
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the evolution of the latent variable over time, and capture more precisely the multidimensionality of the scale
[34].

A further issue in chronic diseases, and particularly in clinical trials in depression, is how to appropriately
handle data from patients dropping out of the study. Dropout rates can typically range from 20%-40% for
short studies [35] to 50% in studies lasting over a year [36]. Patients may leave the study because they
suffered from an adverse event or because they feel no benefit from the treatment [37], as well as for non-
medical reasons. Interestingly, adverse events can also occur in the placebo arms, a fact known as nocebo
effect and related to negative expectations of the medication [38]. In the literature and nicely summarised
in [39], the dropout process is usually classified into Missing Completely At Random (MCAR), Missing At
Random (MAR) and Missing Not At Random (MNAR) depending on the relationship between the risk of
leaving the study and hidden or observed variables. MNAR is also called informative dropout [40, 41]. In
longitudinal studies, the need to integrate the dropout process in the model to obtain unbiased estimates in
case of MNAR has been demonstrated ([41]. More recently, Bjornsson et al. [42] verified and quantified the
magnitude of the bias depending on different estimation methods. In the context of MDD and NLMEM,
Gomeni et al. [35] showed that modelling the dropout process is necessary to avoid biased inferences.

In the present study, we built a model to take into account the multidimensionality of the scale, the
occurrence of dropout events, and further complexities such as an open label period for one of the studies,
and dose adjustments for non-responsive patients in clinical trials involving agomelatine. This work aimed
to (1) combine IRT, NLMEM and dropout model to characterise the disease progression of MDD and drug
effect of agomelatine, (2) use the IRT methodology to identify the most informative items. The data used
and the modelling approach are presented in Materials and Methods. The resulting model and its validation
are outlined in the Results section. The most informative items are described at the end of this section. We

then discuss the strengths and limitations of this work, and the perspectives for the future.

MATERIALS AND METHODS

Data

The data for this paper was collected in five phase IIT ([36, 43, 44, 45, 46]), multi-centre, placebo-
controlled, flexible dose, double-blind studies, as shown in Table I. Trials were selected based on a similar
clinical management of the placebo arms, as well as the availability of individual HAMD scores to allow
longitudinal modelling of the evolution of depression with IRT. All studies included men and women aged
between 18 and 65 years, except [Heun2013] where patients were over 65 years. Inclusion criteria was a
moderate to severe major depressive episode according to DSM-IV-TR criteria, characterised by an HAM-D
score of at least 22 requiring an antidepressant treatment. Additionally for some studies the Clinical Global
Impression (CGI)- severity of illness (CGI-S) needed to be at least 4 with a duration of the current depressive
episode of 4 to 8 weeks.

Detailed information on each study is given in Supplementary material. Briefly, all trials included a
compulsory treatment period and an optional period where the patients could continue receiving the treatment
they had been randomised to, summarised in table I. Patients were randomised to treated or placebo groups
at entry, except in [Goodwin2009] where patients were first enrolled in an open-treatment (TO) period for 8
to 10 weeks. Patients were seen every 2 weeks during the mandatory phase and every 4 to 9 weeks during
the optional phase. The main clinical endpoint was the Hamilton Depression Rating Scale, a questionnaire
composed of 17 items (HAMD-17), which was taken at each visit, along with a CGI scale determined by
the physician. Patients could continue on to the optional phase subject to their and/or the investigator’s
agreement. Additionally, the CGI Improvement score (CGI-I) was used to determine withdrawal at specific

visits for some studies. Patients were withdrawn from study if the CGI-I was greater than 3 at week 10
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in [Kennedy2006], greater than 3 at week 6 and greater than 2 at week 10 in [Kennedy2014], and greater
than 2 at week 12 in [Heun2013]. All studies compared a dose of 25 mg of agomelatine to placebo, except
[Kennedy2014] which included a 10 mg and a 25 mg fixed dose arms. For all patients except in two arms
(10 mg and 25 mg fixed dose) of [Kennedy2014], the response was evaluated after 2 weeks, and if deemed
insufficient according to an external group of experts, the dose was doubled.

Fig. 1 shows the evolution of the HAMD-17 score over time stratified by study and arm. Overall, 1549
patients were followed over time with a median follow-up of 25 weeks. Demographic characteristics can be
found in table II.

Model building

Item-response theory and non-linear mixed effect models were used to analyse the longitudinal mea-
surements of the HAMD scale. The individual scores were modelled through IRT as a function of a latent
variable D representing depression. A model of the evolution of D under placebo was developed to describe
the natural evolution of depression in the clinical trials. Agomelatine concentrations were predicted through
a K-PD model [47] based on individual patient regimen, and found to act on parameters governing time to
remission and relapse. A joint model was developed to account for dropout related to D.

To develop this complex model, we proceeded sequentially. The dataset was split in a building dataset
(N=1088) and an evaluation dataset (N=461), stratifying on study and treatment group. First, an initial
estimation of the population-specific parameters of the IRT model for each item was obtained using only the
placebo and baseline data. Second, a structural model for the evolution of D under placebo and for the effect
of agomelatine was developed, and coupled with a model for dropout, investigating the link between D and
the probability to leave the study. Standard model building and evaluation methods were used. The model
was further extended to account for specific features such as dose increase after 2 weeks in poor responders
and an additional effect of open treatment. Third, the final model was evaluated on both the building and

the evaluation datasets with 1000 trial replicates.

Model application

The model was then used to predict the difference between agomelatine and placebo on the level of the
HAMD-17 scores over time. A measure of efficacy is the standardised mean difference (SMD) at 6 weeks,
also known as effect size. This was computed with Cohen’s d-statistic [48] first in the context of clinical trial
simulation (CTS) using the last prediction carried forward, and second using predictions which enable the
computation of a dropout-corrected SMD. We reported the median SMD and dropout-corrected SMD with
their 90% prediction interval (5th and 95th percentiles). We also used information theory to assess which
items are most sensitive to changes in depression levels.

Detailed information on the equations for different models tested, model building and evaluation, and
model use are reported in Supplementary Materials. The main components of the final model are described

in Results.
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RESULTS

Details concerning the different steps of model building are reported in the Supplementary material. Below

we describe the main components of the final model.

Model building
IRT Model

HAMD-17 is a composite score assessed by a questionnaire constituted of 17 items exploring several
symptoms of the disease. Some questions had three possible answers while others had five. Instead of
modelling directly the total score, we consider these items as a surrogate measure of the depression level and
modelled the impact of disease progression on each item. Let observation Y;;s represent the value of the score
for question s of the HAMD-17 scale for patient ¢ at time ¢;;. For each item, the response was modelled by an
ordered categorical model [49, 50]. The probability of being equal to K depends on item-specific parameters,
which were assumed to be characteristic of the population, and an individual latent variable D;; representing
the level of the depression for subject ¢ at time #;;:

s (Dij—bsx)

P(Yijs >K)=—“*—p——7 ,K=1,--,Kmax (Kmax =2 or 4) (1)

14e%s (Pij—bsk)

P(Yjs=K)=P(Y;js >K)—-P(Y;js>K+1) ,K=0,--,Kmazr—1 (Kmax =2 or 4)

P(Y;js = Kmazx) = P(Y;js > Kmax) (2)
Kmax

>0 P(Yijs=K)=1

where a; is the slope (or discrimination) and bsx the difficulty parameter (or item location) for item
s and value K of the score. Difficulty parameters associated to each score are in the scale of the latent
variable. Higher values indicate high scores are only likely in the presence of severe depression. The difficulty
parameter was constrained to be non-decreasing (bs k41 > bs i ). For simplicity and readability, the indices

are removed.

Longitudinal model of depression status

Clinical trials on depression characteristically exhibit a marked placebo response, as patients will expe-
rience a phase of remission (decreasing severity of the disease) and possibly a phase of relapse (increasing
severity of the disease). Clinically, remission is characterised as achieving a total HAMD-17 score of less
than 6 while relapse is defined by a total HAMD-17 score that increases and exceeds 16 points. If patients
relapsed, they were withdrawn from the study so only the initial part of the relapse phase was available. The
assumption is that all patients return in time to a score close to their baseline. Several models accounting
for the evolution of depression have been proposed in the literature [51, 52, 53, 54]. Here, we used a flexible
model which can capture the remission and relapse phase, combining a Weibull model to describe the remis-
sion with flexibility as presented by Gomeni et al, and an exponential model that tends towards the baseline
value to describe the relapse (equation 3).

This model assumes that under placebo, depression represented by the variable D changes with time ¢

according to the following equation:

D(t) = DO — Drem - (e*K'r‘el(t)-t _ e*(Krem(t).t)’Y) (3)
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where Dy denotes the value of the latent variable at baseline and the magnitude of the placebo effect is

characterised by Drem (latent variable unit). The median time to remission (year) is Tremg and the scale

1
Tremg

parameter (Kremg) is calculated as x1og(2) 5. The halflife (year) of relapse is T'rely and the associated
rate (Krely) is %@lo x log(2). The shape parameter is v and controls the sigmoidicity (curvature), reflecting
how steeply depression changes over time. When « = 1, this model reduces to the inverse Bateman function.

The individual parameter for subject i was described as 6; = p * exp(n;) for Drem, Trem, Trel and -, and
0; = u+n; for Dy, where u denotes fixed effects and n; denotes random effects assumed to be distributed as

n; ~ N(O, Q) with variance-covariance matrix €.

Drug effect

Individual dose regimens were recorded for all studies, but there were no blood samples collected. In order to
take into account agomelatine pharmacokinetics and their influence on the evolution of depression, we used
the K-PD model proposed by Jacqmin et al. [47]. This model assumes that the kinetics of the drug can be
summarised in a virtual compartment, called biophase, in equilibrium with the dynamics of the PD marker
it acts upon. The elimination rate from the biophase can be inferred from the dynamics of the marker.
Assuming a bolus input, the virtual concentration C'E in the effect compartment can be modelled using the
following differential equation:
dCE  log(2)

= — E 4
dt Teq x ¢ 4)

This model has a single parameter, T'eq, representing the half-life of elimination from the biophase.
The best model of the drug effect assumed a linear model of the virtual concentration, with the compound

acting on the remission scale (slope: aryem) and relapse half-life (slope: ar,.e;) as follows:

Krem(t) = Kremg (1 + arrem X CE (1)) (5)

Krel(t) = Krelg (1 — arre X CE (t)) (6)

Dropout model

The baseline hazard model was modelled by a Weibull function, and the link between the latent variable
and the hazard was best described using a weighted difference between the current and baseline value of the

latent variable.

k—1
mies) =5 (5) < (s £ @6) g

with f (t}6;) = (1— 2U4p0=Do ).

Drem

Refining the model

Goodness of fit plots, including Visual Predictive Checks (VPC), were produced to evaluate the intermediate
models. The un-stratified total score VPC showed a strong underestimation of the effect, both in the remission
and relapse phases. The plots were then stratified by treatment sequence and dose adjustment (at week 2).
They showed overestimation of HAMD-scores during the open treatment period in [Goodwin2009]. Also, a
delay was apparent in the HAMD decrease for subjects who required a dose adjustment after two weeks.
These factors were included in the model as follows.

First, the open treatment period was modelled as a symptomatic effect with a temporary improvement:

Page 6



D(t) = D(t) = Bopen (1 = exp (- 722 - 1)) if £ < trana,
D(t) = D(t) - ﬁopEn 1—exp _% : trand)) X exp (_{;i(j? : (t - trand)) else (8)

where t,.qnd, corresponding to the randomisation time, was a design variable (8 or 10 weeks). Two parameters
were estimated in this model: T,,e, which represents the half-life of improvement and Bopen the maximal
improvement from D(t). Moreover, the primary outcome in [Goodwin2009] study was the relapse so patients
who dropped out in the open treatment period were not included in the study. Thus for this specific study,
the risk to dropout was null during this period.

Second, the dose adjustment after two weeks was handled by defining a binary covariate with value 1 for
the subjects who required a dose change. As these patients did not experience an improvement in the level
of depression by the end of the second week, we modelled this by adding a fixed lag-time of two weeks, and

introducing a covariate effect on the remission scale, as follows:

Krem(t) = Krem(t) x (1 — Bqqj) 9)

Parameter estimates

Parameters of the main models and their relative standard errors are reported in table III. The parameter
estimates for each item of the IRT model can be found in supplementary material (Table SI). All parameters

were precisely estimated with very small estimation errors reported by NONMEM [55].

Model evaluation

Fig. 2 shows the item characteristic curves for the 17 items of the HAMD scale. They are compared
to a GAM with cross-validated cubic spline which makes no assumption on the shape of the models. The
probability for a score for each item over depression level is similarly well described by the smooth regression
and the IRT model, which supports the use of this model.

Model adequacy was assessed both in the building and in the evaluation dataset. The predictive perfor-
mances on the total HAMD score of the longitudinal model are shown in Fig. 3. The plots are stratified
by dose adjustment (rows) and treatment sequence (column). In each panel, we see that the 5th, median
and 95th percentiles of the observation were mostly included in the prediction interval of these percentiles
in simulation, representing a satisfactory ability of the model to describe the data. Un-stratified VPC (not
shown) indicate the model was able to predict the drop-out rates. However, stratified VPC in Fig. 4 shows
under- and over- predictions of the drop-out rates notably in the TO+P (top row) and the P+T (bottom

row) groups with up to 0.1 points of difference.

Model application
Impact of dropout on the computation of the difference from placebo

We simulated 100 clinical trials using the final model to evaluate the expected difference between treated and
placebo arm. The associated difference between active and placebo treatment, shown in Fig. 5 (left), reflects
the beneficial effect of agomelatine. The maximum beneficial effect of agomelatine reaches 5.2 points (90%
predicted interval: [4.5, 5.9]) after 12.7 weeks with an associated dropout-corrected SMD of 0.77 ([0.68,0.86]).
The median difference at 6 weeks is 4.4 points on the HAMD-17 total score and the dropout-corrected SMD
equals to 0.70 ([0.61, 0.80]).
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However, because of the dropout, good responders in placebo and active groups are over-represented over
time due to the MNAR, process, reducing this difference. To mimic this process, we simulated the time to
dropout for each subject and used the same longitudinal profiles up to the individual time to dropout. The
median difference between agomelatine and placebo treatment is shown in Fig. 5 (right). The beneficial
effect of agomelatine reaches a maximum at 6 weeks with a median difference of 3.1 points on the HAMD-17
scale (90% predicted interval: [2.7, 3.7]) and a SMD equals to 0.58 ([0.49,0.68]) but decreases afterward.

Sensitive subset of items

We used equations 3 and 25 (in supplementary materials) to convert total HAMD-17 scale into the
scale of the latent variable. The depression levels measured using cutoffs on the HAMD-17 score translate
on average to the following categories on the scale of the latent variable: no depression (D < —4.9), mild
depression D € [—4.9, —2.5[, moderate depression D € [—2.5, —0.95] and severe depression (D > —0.95).

The informativity content of the most representative items by disease severity is shown in Fig. 6. The
more informative an item is, the more sensitive it is to detect a small change in the level of depression.
Overall, 9 items accounted for at least 75% of the information, meaning that they were the most sensitive to
detect a change in the depression level. The symptoms ”Depressed mood” combined with ”work and activi-
ties” represented around 40% of the information, suggesting a high link with the severity of the depression.
Informativeness can change over the severity of the disease; for example ”"suicide” was more informative in
case of severe depression, whereas ” general somatic symptoms” was more informative for patients in remission

(no depression).

DiscuUsSsION

Depression is a common and complex disease with a strong impact on quality of life. Major depression
(MDD) is characterised clinically by a persistence of severe symptoms over several weeks, and tends to evolve
in a recurrent condition with cyclic patterns of improvement and relapse. To assess the depressed status of
patients, clinicians use the HAMD-17 scale, a composite score reflecting the responses to a series of questions
covering mood and feelings and covering anxiety, melancholic and psychotic features of the disease. The
clinical outcome in trials on antidepressants typically focuses on a comparison between HAMD scores after
6 weeks of treatment, but characterising the time-course of depression may prove more informative than
considering the outcome at a single time point[56]. In this work, we analysed data from 5 clinical trials on
agomelatine using item-response theory (IRT) to account for each item of the HAMD-17, while simultaneously
modelling changes in underlying depression status and the probability to drop out. Our goal was first to
describe the time-course of depression in a population of patients with MDD, and second to evaluate the
informativeness of the items of the HAMD-17 scale.

The IRT framework has been used mainly to calibrate and combine different aspects of a disease into
a single score, in order to define the severity of a multifaceted disease. Ueckert et al. pioneered its use in
pharmacometrics when they applied IRT to analyse the ADAS-cog score which measures cognitive decline
in patients suffering from Alzheimer’s disease [21]. By using a latent variable reflecting underlying cognitive
decline and influencing the individual assessments, they showed that disease evolution is better characterised,
allowing a greater power to detect the effect of a treatment [22, 24]. In the present study, an additional
challenge was to take into account the specificities of clinical trials, such as the dropout mechanism associated
with patient relapse, the possibility to have a dose adjustment if there is no improvement at the 2nd week
and an open treatment period. The present study represents the first application of IRT in depression,
and allowed to characterise the time course of the disease in placebo/active treatment in the context of a

randomised clinical trial, through a latent variable representing the depression status.
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The model describing the evolution of the latent variable symbolising depression was driven by the avail-
able data. The pattern of placebo response was compatible with the evolution of patients in real life: in this
work, we assumed a flexible model with an initial decrease in the level of depression followed by a relapse
with a much longer time-frame. Indeed, most MDD patients recover from their depressive episode within the
first year. Some of them remain in a state of remission while others alternate between episodes of depression
and remission [6]. We showed that remission is faster and relapse is slower if patients are on active therapy,
reflecting the known response to agomelatine. Indeed, it has been shown in the literature that agomelatine
has a dual effect on melatonin and serotonergic receptors patients [7] resulting in a faster remission. The
exact mechanism of how agomelatine decreases relapse has not been elucidated; however it was observed in
a rat model of chronic mild stress that the antidepressant effects of agomelatine were still observed on week
after cessation of agomelatine treatment [57] suggesting that downstream agomelatine activation mechanisms
(i.e. neuroplasticity, increase on trophic factors including brain-derived neurotrophic factor) could have a
main contribution to this effect. Several models have been proposed in the literature [51, 52, 53, 54] to
characterise the evolution of depression. Russu et al. presented a way to integrate the flexible dosing designs
in the model, but all of these models aimed to describing the HAMD-17 score time course. Our structural
model of the placebo response is based on the model of Holford [52] and integrates the model used by Gomeni
for the remission. For the drug effect model, Mould described the drug effect evolution as a symptomatic
effect, i.e. a temporary evolution from placebo until the end of treatment, which corresponds to the second
model we tested. It has been shown that the time spent in a remission period and the history of recurrent
depressive episodes were predictive of the risk of additional episodes [2]. This suggests an alternative model
where relapse could be modelled using a time-to-relapse model. However, the study would require a very
long observation period as cycles in depression may occur over periods of years, which would be infeasible
for clinical trials. To allow for some patients not relapsing, we attempted to use a mixture model on the
parameter controlling relapse rate, but we could not identify a subpopulation with near to zero relapse.

In the first stage of model building, we tested different combinations of longitudinal model, dropout
model and link function to select the one which best explained the available data. Because of the relationship
between dropout and evolution of depression status, a sequential analysis considering only the evolution of
depression without taking into account different dropout rates would not have been appropriate. For the
IRT model, we assumed that the latent variable affected all the symptoms of the depression captured by
the HAMD-17 scale, while the difficulty of the different items reflected their association with the levels of
depression. Applications of this methodology in other therapeutic areas such as Parkinson’s disease [30]
suggested that several latent variables may be introduced in multifaceted pathologies, each of them being
associated with different symptom groups. We evaluated this possibility here using the method proposed by
Gottipati et al. [30] which looks at correlations between items on the basis of standardised residuals. We
found that the correlations were small (Fig. S6). Despite the multidimensional nature of the HAMD scale,
we therefore chose the most parsimonious model with a single latent variable.

The model selected by combining the longitudinal and dropout components provided a first description
of the data, but evaluation graphs showed discrepancies when stratified according to treatment group. In
particular, we noticed a systematic difference between non-responders, who were prescribed an increase in
dose, and responders who continued on the same regimen. This assessment was performed early during
the clinical trial, as it took place after 2 weeks while the entire study duration was 6 months or 1 year.
This was included, as in the work of Russu et al., in the model as an a priori covariate, here delaying and
slowing the remission phase. To take into account this information in their model, Russu et al. assumed
that parameters associated with remission and relapse take distinct values before and after the time of dose
change, but this model was not identifiable with our data. Another discrepancy between model predictions
and observations was apparent for study [Goodwin2009], which started with an open treatment period of 8

to 10 weeks. Accounting for the fact that subjects had a faster remission when they knew they were being
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given an active treatment improved the model. We estimated that this effect, which can be considered as an
expectancy effect due to the open label design, is about 166% of the drug effect at that time (for patients
who don’t have a dose escalation). This result must however be interpreted cautiously as the expectancy
effect we observed in a controlled clinical trial may not necessarily be extrapolated to a general population.
The quantification of those effects which are much higher than agomelatine effect shows their importance in
depressed patients and the interest of lifestyle or psychotherapy interventions.

One of the challenges of this work was to account for dropout. As the dropout is mainly related to the
level of the depression, values are missing not at random. Several models for dropout were tested, and the
model selected involved MNAR depending on the improvement of depressed status relative to the baseline
value, which was jointly modelled with the longitudinal evolution of the depression. Note that the depression
level is modelled as an unobserved latent variable inferred by the changes in the items of the HAMD-17
score. One issue when parametrically modelling the dropout is that it can be sensitive to the assumptions
made, for instance concerning the shape of the baseline hazard model. To evaluate these assumptions, we
looked at visual predictive checks. Given the complexity of the data, with several treatment sequences and
studies with specific design characteristics, we considered that the adequacy between the prediction and the
Kaplan-Meier estimation of the dropout was acceptable, despite a trend toward a small overestimation of the
dropout for patients in a treatment period. We tried to fix this issue by adding an impact of the treatment
sequence on the dropout without success. In our model, the dropout process was essentially driven by the
latent variable, and dropout due to adverse event or non-medical reasons would not be well captured without
adding competing dropout mechanisms. Another limitation is that we did not take into account the dropout
instigated by the clinicians based on the CGI-I score which was implemented in some studies at weeks 6, 10
and 12. Although this is clearly a limit and a potential source of bias in our modelling, the impact on the
drop-out seems to be minimal (up to 0.1 points of difference) which would not raise serious doubts about the
predictions of the disease’s evolution.

Data-splitting allowed predictive performance to be evaluated more realistically, and could be performed
here given the large number of observations. The predictive performance of the model in the evaluation
dataset was good. Describing the placebo and active treatment response jointly with the risk to dropout
yielded more accurate predictions from the model.

We estimated the magnitude of the effect of agomelatine versus placebo by simulating clinical trials using
the model developed and assessing the difference in HAMD score at week 6 between the two arms. A difference
in HAMD-17 at week 6 (42 days) is considered a common statistical endpoint in depression clinical trials. The
effect estimated here (SMD: 0.58) was however higher than was previously reported for agomelatine in the
various meta-analyses performed on the drug (SMD: 0.26 [58], 0.18 [59], 0.24 [10], 0.26 [9]). This was mostly
due to the limited number of studies included here compared to the other meta-analysis and also driven by
the study [Kennedy2014]. The five trials combined in the present analysis are a subset of the clinical trials
conducted on agomelatine and presented in [10]. Trials were selected based on a similar clinical management
of the placebo arms, as well as the availability of individual HAMD scores to allow longitudinal modelling
of the evolution of depression with IRT. However, the difference between placebo arm and treated arm in
[Kennedy2014] was larger than in the other studies with agomelatine, and is consistent with the SMD of 0.7
reported in [10] for that particular study and in the meta-analysis performed by [9]. From the time-course
of HAMD-17 score in the different studies, this appears to be due to a slower remission in the placebo group
in [Kennedy2014], whereas the impact of the drug in the treated group was similar when compared to the
other studies (see Fig. 1). A more conservative estimate of 0.26 for the effect size has been reported in the
meta-analysis by [9] and reflects the significant but modest effect of agomelatine.”

We performed additional simulations using the model to assess the benefit of agomelatine when taking
into account differential dropouts between treatment arms. Indeed, dropout is a censoring mechanism and

the remaining patients are those who have responded most effectively to placebo or active treatment. Thus
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the difference from placebo is biased since it does not reflect the actual one. Characterising the dropout and
jointly estimated the IRT sub-model and the latent variable allows to have an unbiased estimation of the
parameters, and thus to offer the possibility to simulate individual uncensored profiles. These simulations
showed a difference of 4.3 points on the HAMD-17 scale at the 6th week compared to 3.1 points taking into
account patient dropout. As illustrated here in the context of depression, taking dropout into account in
the modeling allows to access to the actual value in these clinical trials of the drug effect. This shows the
benefice of this framework for the design of future clinical trial with more powerful statistical tools.

One of the advantages of modelling each item using IRT is that we can evaluate which items are sensitive to
a change in the depression level, and thus are sensitive to differentiate between active and placebo treatment.
Since the 60s, the 17-item version of the HAMD has become the standard for clinical trials with a widespread
use. Limitations have been largely discussed and mainly concern a lack in the identification of a change in
the severity of the disease [17], the fact that the items measure different constructs, the presence of unequal
weights attributed to different symptoms domains and the failure to include all symptom domains such as
reverse neurodegenerative symptoms [60]. Thus, several scales have been developed including Bech [16],
Maier[19], Gibbons[17], Toronto[20] subscales. The top 9 items we found to be most informative are all part
of these subscales. The strength here is that the association between symptoms and diseases is quantitatively
assessed. Several publications showed that this methodology increases the chances of detecting a difference
between treatments compared to an analysis based on the total score. In their example, Buatois et al.
[22] found that IRT methodology in the context of NLMEM is at least as powerful as using a subscale. As
presented by Ueckert [50], this is an ideal framework to include other outcomes as the association is quantified
and would allow a better characterisation of the level of severity of the disease. It would be very interesting
for future work to integrate different measures such as neurodegenerative symptoms or the CGI scale. Also

given the complexity of such models, a simplified subscale with a single factor structure could be envisaged.

CONCLUSION

In conclusion, the evolution of the depression level in five phase III clinical trials was analysed by com-
bining IRT and pharmacometric modeling. The joint framework with integration of the dropout considers
the symptoms of the HAMD-17 scale, the disease progression and the drug effect which were more accurately
assessed by integrating and modelling the dropout. This allowed us to have access to the actual therapeutic
effect in clinical trial setting. The obtained sensitive set of items was in accordance with the literature and

through the IRT methodology, the link between symptom and disease was quantitatively assessed.
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TABLES AND LEGEND TO FIGURES

Table I: Study design

Treatment sequence Number of Period length  Study duration Median number of

Study (compulsory/optional period)  patients (week) (week) visits (min-max)
. TO+P/P 174 . 13 (6-15)
[Goodwin2009] TO+T/T 164 8*+24/20 52 4 (6-15)
. P / T 119 (2 12)
[01162007} T/T 116 6/46 52 (2 12)
[Kennedy2006] E?? }82 6/46 52 g 3;
P / P 141 8 (2 )
[Kennedy2014] T/T 406 6/18 24 8 (2 8)
P / P 70 9 (2 9)
[Heun2013] )T 148 8/16 24 9 (2-9)
*for some patients, the open treatment period was extended to 10 weeks. TO: open treatment period, P: Placebo period, T:

Active treatment period

Table II: Characteristics of the population.

Characteristic
Weight (kg)
Body mass index (kg/m?)
Body surface area (m?)

Median (min-max)
70.5 (36.3-210)
25.4 (14.2-58.2)
1.79 (1.25-3.13)

Creatinine (pmol/1) 73 (19-179)
Creatinine clearance (mL/min) 96.45 (28.36-427.81)
Age (year) 48 (18-87)
Height (cm) 166 (138-195)
Smoking habits (% of no smoker, has stopped, smoker) 64-10-27
Gender (% Female) 70.5

Table III: Parameter estimates wih their relative standard errors (RSE%)

Between-subject variability

Parameter Value (RSE%) (RSE%)
Do 00 0.45 (4.3%)
Drem 8.39 (2%) 0.37 (3.0%)
Trem (year) 0.16 (4%) 0.82 (1.7%)
Trel (year)  1.66 (7%) 1.27 (3.4%)
5 ) 0.88 (2%) 0.32 (3.7%)
QTrem 3¢-04 (11%) 41 (3.8%)
ATrel le-04 (34%)

Teq (year) 0.06 (6%) -

k (-) 3.29 (5%) -

A (year—1) 5.99 (11%) -

3 12.72 (6%) -
Bopen 1.52 (12%) -

Bads 0.27 (12%) -
Topen (year)  0.11 (13%) -
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Figure 1: Mean value with the 95% confidence interval of the total HAMD-17 score, stratified by study. Each
colour represents the treatment sequence. The vertical line shows the end of the compulsory period,except

for study [Goodwin2009] where two bars denote respectively the end of the open treatment period (dashed
line) and the end of the compulsory period (continuous line).
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Figure 2: Probability for each score for all the items of the HAMD scale predicted by the IRT model (based
on item specific parameters - dashed line) compared to the fit of a generalized additive model (GAM) with
cross-validated cubic spline as a smoothing function (continuous line with 95% confidence interval)
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Figure 5: Predicted agomelatine improvement in HAMD in the context of a clinical trial with dropout (Left)
or assuming no dropout (Right). The black continuous line represents the threshold between a beneficial
(negative values: agomelatine is better) and a non-beneficial effect (positive values: placebo is better). The
red continuous line represents the median difference from placebo with its 95% confidence interval (red shaded

area)
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Figure 6: Contribution of each item based on the Fisher information and stratified by severity. The greater the
contribution for a given item, the more differences in the corresponding score are informative on underlying
depression. Only items where the fisher information represented over 5% of the total information at least for

one degree of severity are included.
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SUPPLEMENTARY MATERIAL

METHODS

Data

The data for this paper was collected in five phase IIT ([36, 43, 44, 45, 46]), multi-centre, placebo-
controlled, double-blind studies with similar inclusion criteria. One clinical trial ([Goodwin2009]) was de-
signed to evaluate the efficacy of agomelatine in the prevention of depressive relapse. In the other four trials,
the objectives were to assess the efficacy of the drug compared to placebo after a 6-week treatment, and
to provide additional safety data on agomelatine. A summary of the main characteristics of each trial can
be found in table I. All studies included men and women aged between 18 and 65 years, except for study
[Heun2013] where patients were over 65 years old. The main inclusion criterion was a diagnosis of moderate
to severe major depressive episode according to the DSM-IV-TR criteria and requiring an antidepressant
treatment. Written informed consent was obtained prior to inclusion.

In all studies, the main clinical endpoint was the value of the Hamilton Depression Rating Scale, a
questionnaire composed of 17 items, at the end of the treatment period. With 3 to 5 possible answers to each
item, the total HAMD-17 score can range from 0 (not depressed) to 52, with severe depression characterised
as a score of more than 24. The questions are shown in Fig. S7. They evaluate different components of
depression acting through sleep, anxiety, mood, somatic and psychotic disruptions. Depression status was
also monitored throughout the study by recording the HAMD-17 scale at each visit. The schedule of planned
visits varied across studies, but overall patients were followed every 2 weeks during the mandatory period,
then visits were scheduled every 4 to 9 weeks. At each visit, CGI scale was also assessed. It was developed
to briefly give the clinician’s point of view by summarising all the clinician’s knowledge of the patient in two
items: CGI-S; severity of psychopathology from 1 to 7 and CGI-I; change from the initiation of treatment
on a similar seven-point scale. A higher scores on CGI-I represents more severe depression.

All trials included a mandatory double-blind treatment period and an optional period, based on investiga-
tors and/or patients agreement. During the optional phase, patients continued to receive the treatment they
had been randomised into in a double-blind manner except for patients under placebo in studies [Olie2007,
Kennedy2006] who were switched to a 25 mg dose of agomelatine in the extension phase. During the double-
blind periods (both mandatory and extended), patients were instructed to take two tablets orally once a
day, during dinner, with a glass of water. When patients were randomised in the treatment group (non fixed
25 mg), they were assigned during the first 2 weeks to the dose 25mg. If the improvement of the patient’s
depressive condition was deemed insufficient at the end of the second week for all studies (even in the open
phase), the dosage in agomelatine was increased from 25mg to 50mg for the rest of the study, by substituting
a placebo tablet in double-blind conditions. As a result, the treatment consisted in 2 placebo tablets, agome-
latine 25 mg (25 mg agomelatine tablet + 1 placebo tablet) or agomelatine 50 mg (2 x 25 mg agomelatine
tablets).

In [Goodwin2009], the goal was to assess the long term efficacy through a prevention to relapse study.
Patients were considered to have relapsed when HAMD-17 is greater than 16 during the relapse phase (where
the severity of the disease increase). This study was the only one to begin with an open treatment period
(TO) before the randomisation into the Placebo (TO+P) or Treatment group (TO+T) at week 8. If the
patient was not eligible for randomisation (according to independent expert) at week 8, he/she continued the
open treatment period until week 10 where a second assessment took place. Patients were withdrawn from
the study if they did not fulfil the randomisation criteria. To summarise, only the good responders at week
10 are randomised. If they dropped out before randomisation, their data was not included in the analysis.

In the other four studies, the statistical analysis assessed short term efficacy by comparing the HAMD-17

score at week 6 or week 8 between active and placebo treatment. In studies [Olie2007] and [Kennedy2006],
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patients were randomised at initiation in the placebo or treatment group; at week 6, patients in the treatment
arm continued under the same dosage and all patients under placebo received 25mg of agomelatine (P+T
or T+T respectively). In [Kennedy2006], only patients with CGI-I score < 3 at week 10 were eligible to
continue the study after this visit. In [Heun2013], patients were randomised at initiation in the placebo or
treatment group, but patients continued in the same arm after 8 weeks during the extension period (P+P or
T+T respectively), and the total duration of follow-up was 6 months instead of one year. However during
the extension period at W12 visit, only the patients having CGI-I <2 were allowed to continue.

Study [Kennedy2014] also had, as study [Heun2013], a follow-up duration of 6 months, but patients were
randomised in 4 parallel groups at treatment initiation: placebo, dose 10mg, fixed dose 25mg and dose 25mg
increased up to 50mg if no improvement after 2 weeks. For [Kennedy2014], all the patients having CGI-I <3
at W6 visit were entered in the extension period with the same treatment subject to patient’s agreement.
Patients having CGI-I > 3 at W6 visit did not continue into the double-blind extension treatment period.
Then all the patients having CGI-I <2 at W10 visit could continue in the extension period. The patients
having CGI-I > 2 at W10 visit were withdrawn from the study.

Height (HT), age (AGE), smoking habits (SMOK) and gender (SEX) were recorded at inclusion. Weight
(WT), body mass index (BMI), body surface area (BSA), creatinine (CREAT) and creatinine clearance
(CRCL) were recorded at each visit. A summary of the characteristics at inclusion of the populations in each

clinical trial can be found in table II in the main text.

Modelling strategy

The IRT model, longitudinal model and the main components of the final drug effect and dropout models are
described in Results. In this appendix, we give additional details on the models tested during model building

and on the model building strategy.

Drug effect

As stated in the main text, in the absence of individual pharmacokinetic measurements, agomelatine
concentrations in the effect compartement, C'E(t), were predicted using a K-PD model based on the individual
dose regimens recorded for all studies.

Patients treated for depression usually manifest an improvement in their condition, apparent in a decreased
HAMD score. When the treatment is discontinued, the depression status tends to return to a similar evolution
as would be observed under placebo. This has been termed a symptomatic effect, as the drug is seen to act
on the symptoms of the disease and not modify its underlying course [61]. Considering the time course
of depression, three specific mechanisms of action were investigated for agomelatine. The first mechanism
assumes that the drug speeds up the decrease (i.e. improvement) of the depressed status D(t) represented

by the remission scale Krem(t), through a linear or an Emax model:

E(t) =ax CE(t)

X C
E(t) = ?cfjjcg((ft)) (10)

where E was modelled as a multiplicative effect on the remission scale:

Krem(t) = Krem(t)(1 + E(t)) (11)

A second mechanism assumes an immediate improvement in depression when the patient receives treat-

ment, and is modelled as an additive effect on the placebo response through a linear or Emax model:



where D(t) is from equation (3) (main text).
A third mechanism is through preventing relapse, and we modelled this as a drug effect decreasing the

relapse rate. Again, both linear and Imax model for the dose-effect relationship were tested.

I(t) = a x CE(t)

_ ImaxzxCE(t
I(t) = Temrcn (13)

where I is the fraction of decrease of the relapse rate (Krel(t)).

Krel(t) = Krel(t) (1 — I(t)) (14)

The parameters associated with the drug effect were assumed to follow a log-normal distribution, excepted

for Imax which was assumed to follow a logit-normal distribution.

Dropout Model

During the course of the five trials 35% of patients dropped out, for lack of effect (58%), non-medical
reasons (20%), adverse events (13%), remission (5%), protocol deviation (3%) or loss to follow-up (1%). In
the context of depression and accounting for dose escalation, Russu et al. [56] showed that the dropout
must be considered as MNAR since the main cause is a problem of efficacy and therefore a high level of
disease severity. They modelled the dropout mechanism through a parametric time-to-event model to ensure
unbiased estimators. Patients treated for depression tend to stop taking their medication or to drop out
when they do not feel any improvement in their status, therefore the risk of dropout was assumed to be
influenced by the overall depression score captured by the latent variable. The study duration acts as a
censoring mechanism.

Let the random variable T' denotes the time to dropout. In standard survival analysis, the survival
function S(t) is a meaningful measure giving at each time ¢ > 0 the probability to have survived up to time

t event-free. Assuming that this probability equals 1 at ¢t = 0, we have:
S(t) = Pr(T > t) (15)

The hazard function, denoted by h(t), describes the instantaneous risk of having an event at time ¢ for

an individual who survived up to that time. It can be expressed as:

Prt<T <t+dt|T >1t)
dt—0 dt

(16)

Survival can be directly expressed as a function of the hazard (17):

S(t) = exp (- /0 t h(x)da:) (17)

Modelling the hazard is often more relevant than modelling survival as the hazard function can adjust
throughout the study to reflect changes in disease status and treatment. Here we adopted the usual decom-

position of hazard in a parametric baseline risk function ho(¢) and an exponential function of risk factors:

h(t16;) = ho(t) x exp (B - f (t]6:)) (18)

where [ is the strength of the link between the risk and a function f, depending on the individual parameters
0;.
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In this study, we tested different models for the hazard. First, we assumed a base model where hazard
does not depend on depression status (no link, 8 = 0). Then, we tested various models for the link function,

estimating the strength of the link through the parameter 3:
e dropout at time ¢ may be related to the depression level at that time, f (¢|6;) = D (¢|6;)
e dropout may be related to the cumulative burden of depression up to time ¢, f (¢|6;) = fg D (x)6;) dx

e dropout at time ¢ may be related to a difference between the depression level at baseline and at that
D(t|6;)— Do
Drem

time, weighted by the maximal amplitude of the placebo effect, f (¢]6;) =1 —

To represent the baseline risk hg, standard risk functions were used, like the Weibull (ho(t) = § (%)kil),
and Gompertz (ho(t) = Ae*t) models.

Model building strategy and evaluation

The data was split into a building and an evaluation dataset, comprising respectively 70% and 30% of
the data. Data-splitting was stratified on treatment sequence and study. The model building process was
performed on the learning dataset (steps 1 to 6 below), and the final model was evaluated both on the learning
(internal evaluation) and then on the evaluation dataset (external evaluation). Model selection was based
on the Bayesian Information Criterion (BIC) and parameter precision (relative standard error RSE%). For
covariate selection, statistical relevance was evaluated using a Wald test evaluating the significance of the
slope of a linear model for continuous covariates. For categorical covariates, we performed a Wilcoxon test
(binary covariate), or a Kruskal-Wallis test (multi-level covariate). Model building proceeded in the following

series of steps.

Step 1: initialisation

The first step was to obtain initial estimates for the item-specific parameters in the IRT model. We estimated
them from the population of patients who did not receive the treatment, corresponding to data at baseline
for all subjects, and data from the placebo arms. This dataset provided information on the evolution of D up
to 24 weeks, which was the maximal duration of follow-up for placebo patients in [Kennedy2014, Heun2013].
The value of the latent variable at baseline was supposed to be normally distributed, and for maximum
flexibility an unstructured latent variable model was used to take into account disease progression over time,
estimating the mean values of D at weeks {2,4,6,8,10,12, 14,16, 18,20,24}:

Do ~ N(0,1)

I, (19)
D =Dy —; with j the j'* occurrence

To evaluate the adequacy of ICC and identify misfit, we used non-parametric smoothing splines to fit
the relation between the probability for each score depending on the level of the predicted value of the
latent variable. We then compared the non-parametric smoothing splines with the predicted ICC from the
estimated 69 item specific parameters. Generalised additive models using binomial distribution were used

with cross-validated cubic splines.

Step 2: structural and variability model

The 69 item specific parameters estimated above were then fixed during the model building process (steps 2
to 4). The goal was to determine a structural KPD and dropout model describing the data. Dy was fixed to 0
but its inter-individual variability was estimated. Since there is no consensus in the model building strategy
for joint models, combinations of possible models of placebo effect, drug effect and dropout were tested. The

best model amongst the 48 models tested was selected as the one with the lowest BIC.

Page 23



The parameters for all these models were estimated assuming a diagonal variance-covariance matrix to
describe the variability of the random effects. Then for the best model, a full variance-covariance matrix was
estimated. Then, block matrix was built based on the full matrix but with non-diagonal elements associated
with moderate correlation and adequate estimation accuracy (RSE < 50%). The model with the lowest BIC

was selected.

Step 3: refining the model

Goodness of fit plots, including VPC, were produced to evaluate the intermediate models. The unstratified
VPC from the final model in Step 2 showed a strong underestimation of the effect, both in the remission
and relapse phases. The plots were then stratified by treatment sequence and dose adjustment (at week 2).
The group who received treatment in an open administration period showed consistent overprediction of the
disease. Also, a delay was apparent in the HAMD decrease for subjects who required a dose adjustment after
two weeks, suggesting the treatment acts more slowly in these patients or that its effect only appears after
the dose increases. These factors were included in the model as follows.

First, systematic differences between open and blinded treatment periods were accounted for using an
additional model. A simple way to do this is to consider open treatment as a binary covariate that has an

impact on the remission scale, as in the following equations:
Krem(t) = Krem(t)(1 + Bopen) (20)

Alternatively, we assumed that open treatment acts like a symptomatic effect with a temporary improvement:

D(t) = D() = Bopen (1~ exp (222 1)) if £ < trana,
D(t) = D(t) - 6017671 1- €xXp _% . trand)) X exp (_% ! (t - trand)) else (21)

where t,.4nq corresponds to the randomisation end of the open treatment period and is defined by the design (8
or 10 weeks). Two parameters were estimated in this model: Tppep, representing the half-life of improvement,
and Bopen, reflecting the maximal improvement from D(t). Those two models were tested and the one with
the lower BIC and best parameter precision. Moreover, the primary outcome in [Goodwin2009] was the
relapse so patients who dropped out in the open treatment period were not included in the dataset. Thus
only for this study, the risk to dropout was null during this period.

Second, dose adjustment after 2 weeks was handled by defining a binary covariate with value 1 for the
subjects who required a dose change. As these patients did not experience an improvement in the level of
depression by the end of the second week, we modelled this by adding a fixed lag-time of two weeks, and

introducing a covariate effect on the remission scale, as follows:
Krem(t) = Krem(t)(1 — Baaj) (22)
Third, we tested combinations of drug effect on T'rem and Trel.

Step 4: joint estimation of all parameters

During steps 2 and 3, the item specific parameters remained fixed to the estimates obtained using an unstruc-
tured model of the latent variable in step 1. Once the structural model and the impact of design elements
had been defined, a simultaneous estimation of all of the parameters for the IRT /K-PD/dropout model was
performed to obtain unbiased estimates of the item specific parameters, taking into account the model for
the latent variable. Individual estimates of all the parameters in the model (Empirical Bayes Estimates, or

EBE) were obtained and goodness of fit plots were checked for model adequacy.
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Step 5: covariate selection

The value at inclusion of continuous covariates (WT, HT, AGE, BMI, BSA, CREAT, CRCL) and categorical
covariates (SMOK, SEX) were recorded. They were tested in a Cox model for time to dropout using a stepwise
procedure based on likelihood-ratio test with a threshold on the p-value of 0.05 in the forward selection and
0.001 in the backward elimination. Then they were integrated in the exponential term of the hazard function
(proportional hazard). For their impact on longitudinal process, covariates were tested for their potential
correlation with the EBE, assuming a linear model with a Wald test on the slope for continuous covariates,
a Wilcoxon test for gender covariate, and a Kruskal-Wallis test for smoking habit covariate. To take into
account multiple tests, a relationship was considered to be statistically significant only if the p-value was
lower than 0.001. If the relation was both statistically significant and clinically relevant, they were integrated

in the model as follows. For continuous covariates the model was:

0; = p+n; + Ba X (A — median(A)) for parameters normally distributed (23)
log(0;) = log(u) + n; + Ba x (A — median(A)) for parameters log-normally distributed,
and for categorical covariates we assumed:
O; =+ + Ban X Lazy for parameters normally distributed (24)
log(6;) = log(p) + mi + Ban X La=, for parameters log-normally distributed
with n € {2,---,p} and p the number of categories. 85 represents the impact of the covariate on parameters

and A the considered covariate (e.g. Age, Sex). For categorical covariates, u is the value for the reference
and f35 p, is the fractional change for other categories.

The covariates retained both in the longitudinal and dropout sub-models were then directly integrated in
the full model.

Step 6: evaluation

To evaluate the best model, we performed visual predictive checks (VPCs) of the total score (HAMD-17)
by comparing the observed 5th, median and 95th percentiles to the predicted ones (with the 90% prediction
interval for each boundary) both in the learning and the evaluation dataset. Predictions of the total score
were based on simulations of 1000 datasets on item level using the best model. For each dataset and patient,
time-to-dropout was simulated and longitudinal observations (score for each of the 17-th items) according to
the study design were simulated up to the time-to-dropout. The total HAMD-17 score was derived from the

item-level scores in the simulations and used to plot a VPC for the clinical outcome.

Model application
Impact of dropout on the computation of the difference from placebo

Based on the model and parameter estimates, the median difference between active and placebo treatment
was predicted over time by simulating individual trajectories over 1 year. 100 trials were simulated according
to table SII. The sample size in each group were based on the data. In clinical trials, patients who relapse
drop-out from the study and their clinical data are not recorded after this time. Thus the best responders
are over-represented over time decreasing the difference. This is illustrated by using the same simulations
but by taking into account only observations occurring before the dropout time, which was simulated by our
model. Then the median difference between both arm was computed over time. Because of the computational
burden, we only did 100 simulations, so the 90% prediction interval of this difference was computed instead
of the 95% interval.
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We obtained the predicted HAMD-17 score as a sum of the probabilities of the score for each item:

17 {2,4}
HAMDyz =Y | > K x P(Y = K) (25)
s=1 K=0

where the probability of each score over time was defined in the IRT model according to equation (2), s is

the item index, and K the possible score for each item which can be in {0, 2} or {0,4}.

Sensitive subset of items

Another application of the model was to determine items which were the most sensitive to a change in
the level of the depression. We used the Fisher information matrix and optimal design theory to determine
the most informative items depending on the severity of the disease [21]. If each item is equally informative,
then they each must represent 5% of the information. The information is expressed depending on the latent
variable, i.e. the severity of the disease. The most influent items are defined as the items which represent
more than 5% of the information at least once over the range of the latent variable.

The average proportion of informativeness of the most informative items was calculated according to
different categorised levels of disease severity. To do so, we first categorised the level of severity on the latent
variable scale, then we computed the average proportion in a categorised level of severity. Zimmerman et al.
[62] recommended the following severity ranges for the HAMD score: no depression (0-7); mild depression
(8-16); moderate depression (17-23); and severe depression (>24). The corresponding value on the latent
variable scale can then be derived using eq. 25. The AUC of the information within each category was
computed and the ratio between the AUC of each of the most influent items and the sum of the AUC of all

the items was determined to compute the proportion of informativeness for the most influent items.

Software

Parameter estimation was performed in the software NONMEM version 7.3 [55] using the second-order
conditional estimation algorithm with Laplacian approximation. NONMEM was also used to perform simu-
lations for the computation of the VPC for the intermediate models, and R-3.5.1 [63] was used for diagnostic
graphs and statistical analyses. For the final model, simulations of clinical trial was performed using the
function simulx of the package mlxR [64] in R. Due to the size of the data, we used our own R script to
create all the VPCs.

RESuULTS

Model building
IRT model and item-specific parameters

First, the 69 item-specific parameters in the IRT model were successfully estimated using only placebo
data. At this stage, the relative standard error of these parameters could not be obtained since the covariance
estimate step did not complete and bootstrap could not be performed due to the very long runtime. The
comparison between the fit of a GAM or the IRT (Fig. S1) was however satisfying, supporting the use of
these parameters for the next stage of model building, and these parameters were fixed for model selection.

The second step aimed to determining a structural and variability model which could describe the data
sufficiently well. The parameters and objective function were estimated for the 48 models combining different
features. Parameters Ty, £C59 and ICso were estimated as fixed effects without variability. At this stage,

almost all of the tested models ran into computational errors and terminated due to rounding errors. All of
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the runs were then re-estimated with updated initial parameter values. The best structural model assumed a
linear model for the dose-effect relationship, with the compound acting on the remission scale. The baseline
hazard model was modelled by a Weibull function, and the link between the latent variable and the hazard
was best described using a weighted difference between the current and baseline value of the latent variable.
The full variance-covariance matrix was tested and all correlations between the random effects were assessed.
We kept the model with correlations not overly poor and maintaining adequate estimation accuracy. The final
model included a block correlation between nprem, Mrrem, Nrrer and 7q, which best described the variability
structure. At the end of this phase, the VPC for the total HAMD score showed a reasonably well estimated
remission but an underestimation of the remission scale in the open treatment period. Moreover, there were
an overestimation of the median and the 95th percentile for late time points. For patients who needed a dose
adjustment, the HAMD-17 scores in the data did not decraese while the model, on average, predicted an
instantaneous improvement. Incorporating design elements highly improved the fit. Adding a fixed lag-time
of 2 weeks in the longitudinal evolution and a decreased remission scale for patients who required a dose
adjustment at the second week improved the BIC by 441 points. Adding a fixed lag-time (set to the end of
the open treatment period) in the hazard model and a symptomatic open treatment period effect according
to (eq. 8) further improved the BIC by 173 points.

Finally, we added a second effect of the drug, assuming it also acted to slow the relapse rate, and this
improved the fit again (60 points). The 95th confidence interval on this parameter, from 3.4F — 05 to
1.7FE — 04, computed based on the RSE excluded 0.

The 82 parameters (i.e. 69 for IRT, 10 for the KPD submodel and 3 for the time-to-event model submodel)
and the 12 components of the variance-covariance matrix were then jointly estimated. The run successfully
converged, and we could obtain estimates of the standard errors for all parameters. The BIC was much lower
(a drop of 2194 points) after re-estimation, with a final objective function of 242311.

The link between the covariates and the EBE was investigated using a linear relationship (expressed as a
fraction of increase from reference for categorical covariates). Out of the 54 tests, only an association between
age and the value at baseline of the latent variable was found to be significant (p = 2.8e — 05). However, the
magnitude of the effect was not clinically relevant with 0.4 points of difference on the total HAMD score for

a patient 10 years older compared to the median age, so the age was not retained in the final model.

Parameter estimates

Except for the IRT submodel, parameters of the model and their relative standard errors are reported
in table IIT in main text. The parameter estimates for each item of the IRT submodel can be found in
supplementary Table SI.

All parameters were precisely estimated with very small estimation errors reported by NONMEM. On
the other hand, the variability for some parameters, Trel and arrem, was found to be quite high. The
high variability for the half-life of relapse Trel can be due to the fact that some patients will relapse (short
half-life), and some will stay stable at low values of depression status (very high half-life). As a consequence,
the estimated time to relapse for a typical individual is very high, greater than the maximal duration of
clinical trials of one year. This is confirmed by the individual distribution of the parameter Trel conditional
on having relapsed or not (dropout) which indicates a significant difference in the distribution mode. Indeed,
the relapse half-life mode of patients who dropout from the study is 0.25 years while that of patients who
complet the study is 4.25 years. We attempted to use a mixture model to account for this but this was not
successful. Do, Drem, arrem, OTrel, and Bopen are variables on the logit scale, i.e. the scale of the latent
variable. The typical individual starts at Dy = 0 and tends to the estimated Drem value (—8.39 points) if
there is no relapse. For patients under placebo, the ”half-life” of the remission is equal to 0.16 year (slightly
less than 2 months) and the half-life of the relapse is estimated to be about 1.66 year. The drug acts both

by increasing the scale of the remission, implying a faster improvement (24% of increase for the 25mg dose),
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and by reducing the slope of relapse (8% of decrease for the 25mg dose), so that it takes longer to relapse.

To better illustrate the effect of drug treatment and dose adjustment according to the model and equa-
tion 25, we predicted in Fig. S2 the evolution of the total HAMD-17 score for a typical subject under
placebo/active treatment, experiencing or not a dose adjustment at the second week; we also considered
whether the treatment was blind or open. After 6 weeks, the mean HAMD-17 score for patients who don’t
have a dose adjustment at week 2 was 13.2 versus 18.5. This is due both to the delayed improvement due to
the lag-time of 2 weeks included in the model, and to the remission scale, reduced by a factor of 27% for pa-
tients who have a dose increase. The impact of the open treatment period was modelled through a temporary
improvement (symptomatic effect) which increases over time. For a typical patient without dose adjustment,
the difference with the reference (placebo/treatment) at baseline was null. The additional predicted open
effect at the 8th week (randomisation week) was equal to 3.15 points which corresponded to 166% of the
drug effect to that time (difference active/placebo = 1.9 points). At week 8, patients were randomised into
placebo or active arm. The figure shows the predicted residual effect of the open label period and how the
curve tends to reference. The half-life of this decrease equals 5.72 weeks, indicating that this residual effect
disappears after 30 weeks and is negligible (less than 1 point difference) 16 weeks after the end of the open
label period.

The dropout was modelled with a Weibull function for the baseline hazard with an increasing risk (shape
parameter is over 1). If the latent variable is assumed not to have an impact on the hazard (8 = 0), the
probability to drop out at one year roughly equals 0, suggesting that the actual dropout is mainly driven by
a change from baseline of the latent variable. We estimate the hazard ratio for a decrease of 5 point on the
total HAMD-17 score to be equal to 8.35. This leads to a 20% decrease in dropout at 1 year.

Model performance

The ability of the model to represent the data and describe different individual profiles is shown in Fig. S3.
The time course of the individual observed and predicted HAMD-17 scores from equation 25 shows the good
adequacy of the model which can describe for example a non-relapser patient as well as a relapser. In each
panel, two individuals were randomly sampled.

The predictive performances of the longitudinal model on the evaluation dataset (30% of the data) are
shown in Fig. S4. Only three patients were in the group with a dose adjustment and treatment sequence
TO + T so the graphs from this panel are omitted. In general, the evaluation shows a reasonably adequacy
between the predictions and the observations. However, for the some strata, the model tends to overestimate
the level of depression for time after 6 months (eg 'No dose adjustment’ & "TO+P’) which was not the case
in the internal evaluation. This can be due to the low number of patients in this group (40 at the beginning)
and the high rate of dropout which was over 50% after 6 months.

Fig. S5 illustrates the performance of the dropout model in the evaluation dataset. Results are in
accordance to the VPC for the interval evaluation: the model tends to overpredict (Dose adjustment & P+T
/ TO+P / T+T) or underpredict (No dose adjustment & TO+P) the dropout in some groups.
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COMPLEMENTARY TABLES AND FIGURES
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Figure S1: Probability for each score for all items of the HAMD scale, predicted by the IRT model using only the
placebo data (based on item specific parameters - dashed line). This was compared to the fit of a generalized additive
model (GAM) with cross-validated cubic spline as a smoothing function (continuous line with 95% confidence interval)
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Figure S2: Predicted evolution for typical individuals of the total HAMD-17 score depending on the dose
level (randomised into placebo: blue, randomised into active with 25mg: red) and design elements: dose
adjustment at the second week (left) and open treatment period effect (right).
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Figure S3: Individual trajectories observed (continuous lines) compared to the predicted ones (dashed lines) from the fit.
Each colour represents one sampled individual.
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Figure S4: External validation: visual predictive check of the HAMD-17 total score stratified by dose adjustment (by row)
and treatment sequence (by column). Median, 5th and 95th percentiles in the data are compared to the model simulated
median, 5th and 95th percentiles (with the 90% prediction interval in shaded area). The vertical black line represents the
end of the first period. Due to the very low number of patient (3) in the botttom right box, the results are not shown.
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Figure S5: External validation: visual predictive check of the dropout stratified by dose adjustment (by row) and treatment
sequence (by column). The Kaplan-Meier estimated based on the data (mean and 90% confidence interval) is compared
to the model simulated median and the 90% prediction interval (shaded area). The vertical black line represents the end
of the first period. Due to the very low number of patients (3) in the TO+T group with dose adjustment, the bottom
right box is not shown.
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Figure S6: Correlation between the residuals obtained using a single latent variable IRT model
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Hamilton Depression Rating Scale (HDRS)

Reference: Hamilton M. A rating scale for depression. ] Neurol Neurosurg Psychiatry 1960;

23:56-62

Rating Clinician-rated
Administration time 20—30 minutes

Main purpose To assess severity of, and change in,
depressive symptoms

Population Adults

Commentary

The HDRS (also known as the Ham-D) is the most wide-
ly used clinician-administered depression assessment scale.
The original version contains 17 items (HDRS,,) pertain-
ing to symptoms of depression experienced over the past
week. Although the scale was designed for completion
after an unstructured clinical interview, there are now
semi-structured interview guides available. The HDRS
was originally developed for hospital inpatients, thus the
emphasis on melancholic and physical symptoms of
depression. A later 21-item version (HDRS,,) included 4
items intended to subtype the depression, but which are
sometimes, incorrectly, used to rate severity. A limitation
of the HDRS is that atypical symptoms of depression
(e.g., hypersomnia, hyperphagia) are not assessed (see
SIGH-SAD, page 55).

Scoring

Method for scoring varies by version. For the HDRS,,, a

score of 07 is generally accepted to be within the normal

range (or in clinical remission), while a score of 20 or
higher (indicating at least moderate severity) is usually
required for entry into a clinical trial.

Versions

The scale has been translated into a number of languages
including French, German, Italian, Thai, and Turkish. As
well, there is an Interactive Voice Response version (IVR),
a Seasonal Affective Disorder version (SIGH-SAD, see
page 55), and a Structured Interview Version (HDS-SIV).
Numerous versions with varying lengths include the
HDRS17, HDRS21, HDRS29, HDRS8, HDRSG6,
HDRS24, and HDRS?7 (see page 30).

Additional references

Hamilton M. Development of a rating scale for primary
depressive illness. Br | Soc Clin Psychol 1967;
6(4):278-96.

Williams ]B. A structured interview guide for the
Hamilton Depression Rating Scale. Arch Gen Psychiatry
1988; 45(8):742-7.

Address for correspondence
The HDRS is in the public domain.

Hamilton Depression Rating Scale (HDRS)

PLEASE COMPLETE THE SCALE BASED ON A STRUCTURED INTERVIEW

Instructions: for each item select the one “cue” which best characterizes the patient. Be sure to record the answers in the appropriate spaces

(positions 0 through 4).

I DEPRESSED MOOD (sadness, hopeless, helpless, worthless)

0 |_| Absent

I |_| These feeling states indicated only on questioning.

2 |_| These feeling states spontaneously reported verbally.
3 |_| Communicates feeling states non-verbally, i.e. through

facial expression, posture, voice and tendency to weep.

4 |__| Patient reports virtually only these feeling states in
his/her spontaneous verbal and non-verbal
communication.

28

2 FEELINGS OF GUILT

0 |_| Absent

I |__| Self reproach, feels he/she has let people down.

2 |_| Ideas of guilt or rumination over past errors or sinful
deeds.

3 |_| Presentillness is a punishment. Delusions of guilt.

4 |__| Hears accusatory or denunciatory voices and/or

experiences threatening visual hallucinations.
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3 SUICIDE 11

0 |_| Absent

I |_| Feels life is not worth living.

2 |_| Wishes he/she were dead or any thoughts of possible
death to self.

3 |_| |Ideas or gestures of suicide.

4 |__| Attempts at suicide (any serious attempt rate 4).

4 INSOMNIA: EARLY IN THE NIGHT

0 |_| No difficulty falling asleep.
I |_| Complains of occasional difficulty falling asleep, i.e.
more than 4 hour.
2 |_| Complains of nightly difficulty falling asleep.
5 INSOMNIA: MIDDLE OF THE NIGHT 12
0 |_| No difficulty.
I |_| Patient complains of being restless and disturbed
during the night.
2 |_| Waking during the night — any getting out of bed rates

2 (except for purposes of voiding).

6 INSOMNIA: EARLY HOURS OF THE MORNING

0 |_| No difficulty. 13
I |_| Waking in early hours of the morning but goes back

to sleep.
2 |_| Unable to fall asleep again if he/she gets out of bed.

7 WORK AND ACTIVITIES

0 |_| No difficulty.
I |_| Thoughts and feelings of incapacity, fatigue or 14
weakness related to activities, work or hobbies.
2 |_| Loss of interest in activity, hobbies or work — either
directly reported by the patient or indirect in
listlessness, indecision and vacillation (feels he/she has
to push self to work or activities).
3 |_| Decrease in actual time spent in activities or decrease 15
in productivity. Rate 3 if the patient does not spend at
least three hours a day in activities (job or hobbies)
excluding routine chores.
4 |_| Stopped working because of present illness. Rate 4 if

patient engages in no activities except routine chores,
or if patient fails to perform routine chores unassisted.

ANXIETY SOMATIC (physiological concomitants of
anxiety) such as:

gastro-intestinal — dry mouth, wind, indigestion, diarrhea,
cramps, belching

cardio-vascular — palpitations, headaches

respiratory — hyperventilation, sighing

urinary frequency

sweating

0 |_| Absent

I || Mid.

2 |_| Moderate.

3 |_| Severe.

4 |_| Incapacitating.

SOMATIC SYMPTOMS GASTRO-INTESTINAL

0 |_| None.

I |_| Loss of appetite but eating without staff
encouragement. Heavy feelings in abdomen.

2 |_| Difficulty eating without staff urging. Requests or

requires laxatives or medication for bowels or
medication for gastro-intestinal symptoms.

GENERAL SOMATIC SYMPTOMS

0 |_| None.

I |_| Heaviness in limbs, back or head. Backaches,
headaches, muscle aches. Loss of energy and
fatigability.

2 |_| Any clear-cut symptom rates 2.

GENITAL SYMPTOMS (symptoms such as loss of libido,
menstrual disturbances)

0 |_| Absent

I || Mid.

2 |_| Severe

HYPOCHONDRIASIS

0 |_| Notpresent.

I |_| Self-absorption (bodily).

2 |_| Preoccupation with health.

3 |_| Frequent complaints, requests for help, etc.
4 |_| Hypochondriacal delusions.

16 LOSS OF WEIGHT (RATE EITHER a OR b)
8 RETARDATION (slowness of thought and speech, impaired a) According to the b) According to weekly
ability to concentrate, decreased motor activity) patient: measurements:
0 |_| Normal speech and thought. 0 |__| No weight loss. 0 |_| Less than | Ib weight loss in
I |_| Slight retardation during the interview. week.
2 |_| Obvious retardation during the interview. | |__| Probable weight | |__| Greater than | Ib weight loss
3 |_| Interview difficult. loss associated with in week.
4 |_| Complete stupor. present illness.
2 |_| Definite (according 2 |__| Greater than 2 Ib weight loss
9 AGITATION to patient) weight in week.
0 |_| None loss.
I |_| Fidgetiness. 3 |__| Not assessed. 3 |_| Not assessed.
2 |_| Playing with hands, hair, etc.
3 |_| Moving about, can't sit still. 17 INSIGHT
4 |__| Hand wringing, nail biting, hair-pulling, biting of lips. 0 |_| Acknowledges being depressed and ill.
I |_| Acknowledges illness but attributes cause to bad food,
10 ANXIETY PSYCHIC climate, overwork, virus, need for rest, etc.
0 |_| No difficulty. 2 |_| Denies being ill at all.
| |_| Subjective tension and irritability.
2 |_| Worrying about minor matters. Total score: |__|_|
3 |_| Apprehensive attitude apparent in face or speech.
4 |__| Fears expressed without questioning.

This scale is in the public domain.

29

Figure S7: HAMD-17 scale
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Table SI: Parameter estimates with their relative standard errors (%). a is the discrimination parameter and
b the difficulty parameter for item s and score K.

Parameter Value (RSE%) Parameter Value (RSE%)
1 OBJ 242310.79 bs—11,K=3 3.51 (1.64%)
2 AIC 242500.8 bs=11,K=4 6.06 (7.64%)
3 BIC 243975 Qs=12 0.67 (1.78%)
4 ag=1 1.55 (1.37%) bs—12,K=1 -2.14 (1.48%)
5 bs—1,Kk=1 -5.32 (0.62%) bs—12,K=2 4.76 (1.89%)
6 be=1,K=2 2.05 (1.51%) as=13 0.83 (1.36%)
T be=1,K=3 1.72 (1.78%) bs—13,K=1 -5.35 (0.74%)
8 bs—1x—a  2.54 (L.71%) bs—13, K =2 3.24 (1.35%)
9 Qs—g 0.86 (1.26%) Qs=14 0.5 (1.42%)
10 be—2, k=1 -3.78 (0.72%) bs—14,K=1 -5.1 (0.73%)
11 be—o x—2 2.67 (1.35%) bs—14,K=2 3.36 (1.56%)
12 bSZQ’K::g 47 (233%) As=15 051 (149%)
13 as=3 0.72 (2.21%) bs—15K=1 -2.62 (1.22%)
14 bs—g k=1  -0.5(8.38%) bs—15, K =2 2.8 (1.68%)
15 be—3 K=2 2.61 (2.76%) bs—15,K=3 3.98 (2.28%)
16 bs:3,K:3 3.43 (596%) As=16 0.43 (218%)
17 bs=3 K=4 5.19 (28.82%)  bs—16,K=1 0.47 (17.03%)
18  as=s 0.64 (1.55%) bs—16,K=2 1.89 (3.06%)
19 bs—a, k=1 -2.38 (1.33%) As=17 0.26 (5.73%)
20 bs—a,k=2 2.32 (2.08%) bs—17,K=1 5.69 (8.26%)
21 Ags—5 06 (157%) bs:l?,K:Q 1561 (814%)
22 bs=s k=1 -3.68 (0.88%) DO 0
23 bs=s k=2 3.3 (1.69%) Drem 8.39 (1.92%)
24 as—g 0.61 (1.66%) Trem (year) 0.16 (3.51%)
25 bs—gxk=1  -3.18 (0.93%)  Trel (year) 1.66 (6.59%)
26 bs—¢, k=2 2.7 (1.75%) v () 0.88 (1.38%)
27 as=7 1.27 (1.21%) OTrem 3e-04 (10.98%)
28 bs—7.k=1  -5.55(0.47%)  Teq (year) 0.06 (5.43%)
29 bs—7x—o 214 (1.4%) k (-) 3.29 (4.51%)
30 bs—7.rk—3  2.09 (1.41%) A (year ~1) 5.99 (10.82%)
31 bs—7,K=4 2.43 (1.7%) B 12.72 (5.72%)
32 as—g 0.88 (1.44%)  Bopen 1.52 (12.04%)
33 bs—s k=1 -2.85 (0.92%)  Tlag (year) 0.04
34 bs—g k=2 2.64 (1.57%) Badj 0.27 (11.56%)
35 bs—s k=3 3.94 (3.13%) QTrel le-04 (33.68%)
36 as—g 0.52 (1.64%) Topen (year) 0.11 (12.61%)
37 bs—9, k=1 -2.63 (1.23%) wpo 0.45 (4.3%)
38  bs—9 k=2 3.34 (1.87%) WDrem 0.37 (3.0%)
39 bs—g k=3 5.45 (3.07%) corrrrem_prem 0.7 (1.7%)
40 bs—g x—a  5.18 (9.73%) WTrem 0.82 (1.7%)
41 As=10 0.85 (131%) COITTrel_Drem -0.43 (8%)
42 b3:107K=1 -6.13 (068%) COITTyrel_Trem -0.15 (262%)
43 bs—10,x=2 3.22 (1.3%) WTrel 1.27 (3.4%)
44 bs—10k=3 3.14 (1.42%) COTTogr,, Drem  0.84 (1.7%)
45 bszlo’K:4 3.56 (3.12%) COIT oy pyrn -Trem 0.58 (53%)
46 as—11 0.78 (1.2%) COITop,.,, Trel  -0.84 (2.6%)
47 bs—11,xk=1  -5.21 (0.49%) Warrem 1.41 (3.8%)
48 be—11,k—2 3.09 (1.2%) Wey 0.32 (3.7%)
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Table SII: Settings of the clinical trial simulation

Dose Adjustment at week 2 Arm Sample size
No Placebo 253
Yes Placebo 182
No Active 630
Yes Active 146
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