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Abstract

Introduction: In this paper, we studied the effect over time of agomelatine, an antidepressant drug

administered in patient with major depressive disorder, through item response theory (IRT), taking into

account a strong placebo effect and missing not at random data. We also assessed the informativeness of

the HAMD-17 scale’s item.

Materials and Methods: The data includes five phase III clinical trials sponsored by Servier Institute,

totalling 1549 patients followed during a maximum of 1 year. At each observation, individual scores for

the 17 items of the HAMD scale were recorded. The probability for each score was modelled with IRT.

A non-linear mixed effects model was used to describe the evolution of the disease and was coupled with

a time to event model to predict dropout. Clinical trial simulations were then used to compare placebo

and active treatment. Informativeness of each item was evaluated using the Fisher information theory.

Results: The best model combined an IRT model, a longitudinal model for underlying depression

which describes the remission and then a possible relapse, and a hazard model for dropout depending

on the evolution from baseline. The drug effect was best modelled as an effect on the remission and the

relapse phases. The median predicted drop in HAMD between baseline and 6 weeks was 8.8 (90% PI,

8.3–9.2) when on placebo and 13.1 (90% PI, 12.8–13.4) when treated. Nine items were found to be the

most informative.

Conclusion: The IRT framework allowed to characterise the evolution of depression with time and

estimate the effect of agomelatine, as well as the link between symptoms and disease.
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Introduction

Major depressive disorder (MDD), also known simply as depression, is a common but serious mental

disorder. According to the World Health organisation [1] (WHO), MDD is one of the leading causes of

disability worldwide, and affects more than 300 million people. It is characterised by mood, cognitive,

vegetative and psychotic symptoms which can persist through most of the day, nearly every day during

at least two weeks. Major depression is often thought of as an episodic disorder. Individuals who have

experienced earlier episodes will have an increased risk for a new episode of 16% [2]. Epidemiologic data [3]

showed that depression may strike at any time, but is most common later than the age of onset which is in

median in the early to mid 20s. Individuals who are separated or divorced [4] and women (two-fold increase

compared to men) [5] are at higher risk of major depression. The prevalence of the disease decreases with age

[4] in Western countries. According to the National Institute of Mental Health in USA, depression is caused

by combination of genetic, environmental, and psychological factors, which include personal or family history

of depression, major life changes, trauma, stress, as well as certain physical illnesses and medications. WHO

recommends psychotherapy or/and medications for the treatment of depression [1], but symptoms often

persist despite pharmacological treatment [6] showing the urgent need to find better therapeutic options.

Antidepressants drugs aim to correct imbalances of neurotransmitters in the brain that are described to

be responsible of mood and behaviour changes. The antidepressant agomelatine was marketed in Europe in

2009 for the treatment of major depressive episodes in adults [7]. It is thought to act through a combination

of antagonist activity at 5HT2C receptors and agonist activity at melatonergic MT1/MT2 receptors [7, 8].

Agomelatine has shown efficacy in MDD [9] while retaining a favourable tolerance profile, attributed in part

to a lack of interference with the reuptake of neurotransmitters like serotonin and dopamine [10]. Recent

meta-analyses [9, 10] have shown efficacy of agomelatine in MDD while considering published and unpublished

non-positive studies.

Clinical trials in depression face a number of challenges, reflecting the complex etiology and chronic

nature of the disease, the large subject to subject variability in expression and resilience to depression, and

the natural course of disease progression. Moreover a large placebo response is generally observed in trials

evaluating novel antidepressant treatments [11, 12]. The impact of depression on sleep, anxiety, mood, somatic

and psychotic components is captured through a multi-item symptom inventory composed of 17 items, the

Hamilton depression rating scale [13] (HAMD-17). HAMD-17 is used as the primary clinical outcome in

clinical trials on depression for its ability to cover the spectrum of depressive symptoms. However, this

multidimensionality also complicates the interpretation and detection of drug effects [14, 15], and alternative

scales more sensitive to a change due to the drug effect have been proposed [16, 17, 18, 19, 20]. Using an

appropriate scale, as well as extracting all possible information from the different items, improves the power

of clinical trials.

Recent publications have demonstrated, in a nonlinear mixed effect model (NLMEM) context, that the

use of the item response theory (IRT) framework allows an increase in the precision of composite score

estimation, and thus increases the power to detect a drug effect [21, 22]. IRT was first proposed in the 50s

for educational and achievement tests [23]. IRT is often used in the design of questionnaires by tailoring tests

through item selection. It is an important tool in psychometrics and is more and more used in healthcare field.

Combined with NLMEM, this methodology was first used in the context of Alzheimer disease [21, 24, 25, 26]

and also in other diseases such as multiple sclerosis [27], cognition [28], in mechanically ventilated preterm

neonates [29], Parkinson [30], schizophrenia [31], acute ischemic stroke [32] and migraine patients [33]. IRT

is a statistical framework aimed at characterising the relation between each component of a scale and an

individual ability/disability. In our study, each symptom in the HAMD-17 scale is used as a surrogate

measure of a latent variable measuring the depression. Combining IRT and NLMEM provides a useful

framework to characterise mathematically the relation between each symptom and the latent variable, model
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the evolution of the latent variable over time, and capture more precisely the multidimensionality of the scale

[34].

A further issue in chronic diseases, and particularly in clinical trials in depression, is how to appropriately

handle data from patients dropping out of the study. Dropout rates can typically range from 20%-40% for

short studies [35] to 50% in studies lasting over a year [36]. Patients may leave the study because they

suffered from an adverse event or because they feel no benefit from the treatment [37], as well as for non-

medical reasons. Interestingly, adverse events can also occur in the placebo arms, a fact known as nocebo

effect and related to negative expectations of the medication [38]. In the literature and nicely summarised

in [39], the dropout process is usually classified into Missing Completely At Random (MCAR), Missing At

Random (MAR) and Missing Not At Random (MNAR) depending on the relationship between the risk of

leaving the study and hidden or observed variables. MNAR is also called informative dropout [40, 41]. In

longitudinal studies, the need to integrate the dropout process in the model to obtain unbiased estimates in

case of MNAR has been demonstrated ([41]. More recently, Björnsson et al. [42] verified and quantified the

magnitude of the bias depending on different estimation methods. In the context of MDD and NLMEM,

Gomeni et al. [35] showed that modelling the dropout process is necessary to avoid biased inferences.

In the present study, we built a model to take into account the multidimensionality of the scale, the

occurrence of dropout events, and further complexities such as an open label period for one of the studies,

and dose adjustments for non-responsive patients in clinical trials involving agomelatine. This work aimed

to (1) combine IRT, NLMEM and dropout model to characterise the disease progression of MDD and drug

effect of agomelatine, (2) use the IRT methodology to identify the most informative items. The data used

and the modelling approach are presented in Materials and Methods. The resulting model and its validation

are outlined in the Results section. The most informative items are described at the end of this section. We

then discuss the strengths and limitations of this work, and the perspectives for the future.

Materials and Methods

Data

The data for this paper was collected in five phase III ([36, 43, 44, 45, 46]), multi-centre, placebo-

controlled, flexible dose, double-blind studies, as shown in Table I. Trials were selected based on a similar

clinical management of the placebo arms, as well as the availability of individual HAMD scores to allow

longitudinal modelling of the evolution of depression with IRT. All studies included men and women aged

between 18 and 65 years, except [Heun2013] where patients were over 65 years. Inclusion criteria was a

moderate to severe major depressive episode according to DSM-IV-TR criteria, characterised by an HAM-D

score of at least 22 requiring an antidepressant treatment. Additionally for some studies the Clinical Global

Impression (CGI)- severity of illness (CGI-S) needed to be at least 4 with a duration of the current depressive

episode of 4 to 8 weeks.

Detailed information on each study is given in Supplementary material. Briefly, all trials included a

compulsory treatment period and an optional period where the patients could continue receiving the treatment

they had been randomised to, summarised in table I. Patients were randomised to treated or placebo groups

at entry, except in [Goodwin2009] where patients were first enrolled in an open-treatment (TO) period for 8

to 10 weeks. Patients were seen every 2 weeks during the mandatory phase and every 4 to 9 weeks during

the optional phase. The main clinical endpoint was the Hamilton Depression Rating Scale, a questionnaire

composed of 17 items (HAMD-17), which was taken at each visit, along with a CGI scale determined by

the physician. Patients could continue on to the optional phase subject to their and/or the investigator’s

agreement. Additionally, the CGI Improvement score (CGI-I) was used to determine withdrawal at specific

visits for some studies. Patients were withdrawn from study if the CGI-I was greater than 3 at week 10
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in [Kennedy2006], greater than 3 at week 6 and greater than 2 at week 10 in [Kennedy2014], and greater

than 2 at week 12 in [Heun2013]. All studies compared a dose of 25 mg of agomelatine to placebo, except

[Kennedy2014] which included a 10 mg and a 25 mg fixed dose arms. For all patients except in two arms

(10 mg and 25 mg fixed dose) of [Kennedy2014], the response was evaluated after 2 weeks, and if deemed

insufficient according to an external group of experts, the dose was doubled.

Fig. 1 shows the evolution of the HAMD-17 score over time stratified by study and arm. Overall, 1549

patients were followed over time with a median follow-up of 25 weeks. Demographic characteristics can be

found in table II.

Model building

Item-response theory and non-linear mixed effect models were used to analyse the longitudinal mea-

surements of the HAMD scale. The individual scores were modelled through IRT as a function of a latent

variable D representing depression. A model of the evolution of D under placebo was developed to describe

the natural evolution of depression in the clinical trials. Agomelatine concentrations were predicted through

a K-PD model [47] based on individual patient regimen, and found to act on parameters governing time to

remission and relapse. A joint model was developed to account for dropout related to D.

To develop this complex model, we proceeded sequentially. The dataset was split in a building dataset

(N=1088) and an evaluation dataset (N=461), stratifying on study and treatment group. First, an initial

estimation of the population-specific parameters of the IRT model for each item was obtained using only the

placebo and baseline data. Second, a structural model for the evolution of D under placebo and for the effect

of agomelatine was developed, and coupled with a model for dropout, investigating the link between D and

the probability to leave the study. Standard model building and evaluation methods were used. The model

was further extended to account for specific features such as dose increase after 2 weeks in poor responders

and an additional effect of open treatment. Third, the final model was evaluated on both the building and

the evaluation datasets with 1000 trial replicates.

Model application

The model was then used to predict the difference between agomelatine and placebo on the level of the

HAMD-17 scores over time. A measure of efficacy is the standardised mean difference (SMD) at 6 weeks,

also known as effect size. This was computed with Cohen’s d-statistic [48] first in the context of clinical trial

simulation (CTS) using the last prediction carried forward, and second using predictions which enable the

computation of a dropout-corrected SMD. We reported the median SMD and dropout-corrected SMD with

their 90% prediction interval (5th and 95th percentiles). We also used information theory to assess which

items are most sensitive to changes in depression levels.

Detailed information on the equations for different models tested, model building and evaluation, and

model use are reported in Supplementary Materials. The main components of the final model are described

in Results.
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Results

Details concerning the different steps of model building are reported in the Supplementary material. Below

we describe the main components of the final model.

Model building

IRT Model

HAMD-17 is a composite score assessed by a questionnaire constituted of 17 items exploring several

symptoms of the disease. Some questions had three possible answers while others had five. Instead of

modelling directly the total score, we consider these items as a surrogate measure of the depression level and

modelled the impact of disease progression on each item. Let observation Yijs represent the value of the score

for question s of the HAMD-17 scale for patient i at time tij . For each item, the response was modelled by an

ordered categorical model [49, 50]. The probability of being equal to K depends on item-specific parameters,

which were assumed to be characteristic of the population, and an individual latent variable Dij representing

the level of the depression for subject i at time tij :

P (Yijs ≥ K) = eas·(Dij−bsK )

1+eas·(Dij−bsK ) , K = 1,· · · ,Kmax (Kmax =2 or 4) (1)


P (Yijs = K) = P (Yijs ≥ K)− P (Yijs ≥ K + 1) , K = 0,· · · ,Kmax− 1 (Kmax =2 or 4)

P (Yijs = Kmax) = P (Yijs ≥ Kmax)∑Kmax
0 P (Yijs = K) = 1

(2)

where as is the slope (or discrimination) and bsK the difficulty parameter (or item location) for item

s and value K of the score. Difficulty parameters associated to each score are in the scale of the latent

variable. Higher values indicate high scores are only likely in the presence of severe depression. The difficulty

parameter was constrained to be non-decreasing (bs,K+1 ≥ bs,K). For simplicity and readability, the indices

are removed.

Longitudinal model of depression status

Clinical trials on depression characteristically exhibit a marked placebo response, as patients will expe-

rience a phase of remission (decreasing severity of the disease) and possibly a phase of relapse (increasing

severity of the disease). Clinically, remission is characterised as achieving a total HAMD-17 score of less

than 6 while relapse is defined by a total HAMD-17 score that increases and exceeds 16 points. If patients

relapsed, they were withdrawn from the study so only the initial part of the relapse phase was available. The

assumption is that all patients return in time to a score close to their baseline. Several models accounting

for the evolution of depression have been proposed in the literature [51, 52, 53, 54]. Here, we used a flexible

model which can capture the remission and relapse phase, combining a Weibull model to describe the remis-

sion with flexibility as presented by Gomeni et al, and an exponential model that tends towards the baseline

value to describe the relapse (equation 3).

This model assumes that under placebo, depression represented by the variable D changes with time t

according to the following equation:

D(t) = D0 −Drem ·
(
e−Krel(t)·t − e−(Krem(t)·t)γ

)
(3)
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where D0 denotes the value of the latent variable at baseline and the magnitude of the placebo effect is

characterised by Drem (latent variable unit). The median time to remission (year) is Trem0 and the scale

parameter (Krem0) is calculated as 1
Trem0

×log(2)
1
γ . The half-life (year) of relapse is Trel0 and the associated

rate (Krel0) is 1
Trel0

× log(2). The shape parameter is γ and controls the sigmoidicity (curvature), reflecting

how steeply depression changes over time. When γ = 1, this model reduces to the inverse Bateman function.

The individual parameter for subject i was described as θi = µ ∗ exp(ηi) for Drem, Trem, Trel and γ, and

θi = µ+ ηi for D0, where µ denotes fixed effects and ηi denotes random effects assumed to be distributed as

ηi ∼ N(O,Ω) with variance-covariance matrix Ω.

Drug effect

Individual dose regimens were recorded for all studies, but there were no blood samples collected. In order to

take into account agomelatine pharmacokinetics and their influence on the evolution of depression, we used

the K-PD model proposed by Jacqmin et al. [47]. This model assumes that the kinetics of the drug can be

summarised in a virtual compartment, called biophase, in equilibrium with the dynamics of the PD marker

it acts upon. The elimination rate from the biophase can be inferred from the dynamics of the marker.

Assuming a bolus input, the virtual concentration CE in the effect compartment can be modelled using the

following differential equation:

dCE

dt
= − log(2)

Teq
× CE (4)

This model has a single parameter, Teq, representing the half-life of elimination from the biophase.

The best model of the drug effect assumed a linear model of the virtual concentration, with the compound

acting on the remission scale (slope: αTrem) and relapse half-life (slope: αTrel) as follows:

Krem(t) = Krem0 (1 + αTrem × CE (t)) (5)

Krel(t) = Krel0 (1− αTrel × CE (t)) (6)

Dropout model

The baseline hazard model was modelled by a Weibull function, and the link between the latent variable

and the hazard was best described using a weighted difference between the current and baseline value of the

latent variable.

hi(t|θi) =
k

λ

(
t

λ

)k−1

× exp (β · f (t|θi)) (7)

with f (t|θi) =
(

1− D(t|θi)−D0

Drem

)
.

Refining the model

Goodness of fit plots, including Visual Predictive Checks (VPC), were produced to evaluate the intermediate

models. The un-stratified total score VPC showed a strong underestimation of the effect, both in the remission

and relapse phases. The plots were then stratified by treatment sequence and dose adjustment (at week 2).

They showed overestimation of HAMD-scores during the open treatment period in [Goodwin2009]. Also, a

delay was apparent in the HAMD decrease for subjects who required a dose adjustment after two weeks.

These factors were included in the model as follows.

First, the open treatment period was modelled as a symptomatic effect with a temporary improvement:
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D(t) = D(t)− βopen
(

1− exp
(
− log(2)
Topen

· t
))

if t ≤ trand,

D(t) = D(t)− βopen
(

1− exp
(
− log(2)
Topen

· trand
))
× exp

(
− log(2)
Topen

· (t− trand)
)

else (8)

where trand, corresponding to the randomisation time, was a design variable (8 or 10 weeks). Two parameters

were estimated in this model: Topen which represents the half-life of improvement and βopen the maximal

improvement from D(t). Moreover, the primary outcome in [Goodwin2009] study was the relapse so patients

who dropped out in the open treatment period were not included in the study. Thus for this specific study,

the risk to dropout was null during this period.

Second, the dose adjustment after two weeks was handled by defining a binary covariate with value 1 for

the subjects who required a dose change. As these patients did not experience an improvement in the level

of depression by the end of the second week, we modelled this by adding a fixed lag-time of two weeks, and

introducing a covariate effect on the remission scale, as follows:

Krem(t) = Krem(t)× (1− βadj) (9)

Parameter estimates

Parameters of the main models and their relative standard errors are reported in table III. The parameter

estimates for each item of the IRT model can be found in supplementary material (Table SI). All parameters

were precisely estimated with very small estimation errors reported by NONMEM [55].

Model evaluation

Fig. 2 shows the item characteristic curves for the 17 items of the HAMD scale. They are compared

to a GAM with cross-validated cubic spline which makes no assumption on the shape of the models. The

probability for a score for each item over depression level is similarly well described by the smooth regression

and the IRT model, which supports the use of this model.

Model adequacy was assessed both in the building and in the evaluation dataset. The predictive perfor-

mances on the total HAMD score of the longitudinal model are shown in Fig. 3. The plots are stratified

by dose adjustment (rows) and treatment sequence (column). In each panel, we see that the 5th, median

and 95th percentiles of the observation were mostly included in the prediction interval of these percentiles

in simulation, representing a satisfactory ability of the model to describe the data. Un-stratified VPC (not

shown) indicate the model was able to predict the drop-out rates. However, stratified VPC in Fig. 4 shows

under- and over- predictions of the drop-out rates notably in the TO+P (top row) and the P+T (bottom

row) groups with up to 0.1 points of difference.

Model application

Impact of dropout on the computation of the difference from placebo

We simulated 100 clinical trials using the final model to evaluate the expected difference between treated and

placebo arm. The associated difference between active and placebo treatment, shown in Fig. 5 (left), reflects

the beneficial effect of agomelatine. The maximum beneficial effect of agomelatine reaches 5.2 points (90%

predicted interval: [4.5, 5.9]) after 12.7 weeks with an associated dropout-corrected SMD of 0.77 ([0.68,0.86]).

The median difference at 6 weeks is 4.4 points on the HAMD-17 total score and the dropout-corrected SMD

equals to 0.70 ([0.61, 0.80]).
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However, because of the dropout, good responders in placebo and active groups are over-represented over

time due to the MNAR process, reducing this difference. To mimic this process, we simulated the time to

dropout for each subject and used the same longitudinal profiles up to the individual time to dropout. The

median difference between agomelatine and placebo treatment is shown in Fig. 5 (right). The beneficial

effect of agomelatine reaches a maximum at 6 weeks with a median difference of 3.1 points on the HAMD-17

scale (90% predicted interval: [2.7, 3.7]) and a SMD equals to 0.58 ([0.49,0.68]) but decreases afterward.

Sensitive subset of items

We used equations 3 and 25 (in supplementary materials) to convert total HAMD-17 scale into the

scale of the latent variable. The depression levels measured using cutoffs on the HAMD-17 score translate

on average to the following categories on the scale of the latent variable: no depression (D < −4.9), mild

depression D ∈ [−4.9,−2.5[, moderate depression D ∈ [−2.5,−0.95[ and severe depression (D ≥ −0.95).

The informativity content of the most representative items by disease severity is shown in Fig. 6. The

more informative an item is, the more sensitive it is to detect a small change in the level of depression.

Overall, 9 items accounted for at least 75% of the information, meaning that they were the most sensitive to

detect a change in the depression level. The symptoms ”Depressed mood” combined with ”work and activi-

ties” represented around 40% of the information, suggesting a high link with the severity of the depression.

Informativeness can change over the severity of the disease; for example ”suicide” was more informative in

case of severe depression, whereas ”general somatic symptoms” was more informative for patients in remission

(no depression).

Discussion

Depression is a common and complex disease with a strong impact on quality of life. Major depression

(MDD) is characterised clinically by a persistence of severe symptoms over several weeks, and tends to evolve

in a recurrent condition with cyclic patterns of improvement and relapse. To assess the depressed status of

patients, clinicians use the HAMD-17 scale, a composite score reflecting the responses to a series of questions

covering mood and feelings and covering anxiety, melancholic and psychotic features of the disease. The

clinical outcome in trials on antidepressants typically focuses on a comparison between HAMD scores after

6 weeks of treatment, but characterising the time-course of depression may prove more informative than

considering the outcome at a single time point[56]. In this work, we analysed data from 5 clinical trials on

agomelatine using item-response theory (IRT) to account for each item of the HAMD-17, while simultaneously

modelling changes in underlying depression status and the probability to drop out. Our goal was first to

describe the time-course of depression in a population of patients with MDD, and second to evaluate the

informativeness of the items of the HAMD-17 scale.

The IRT framework has been used mainly to calibrate and combine different aspects of a disease into

a single score, in order to define the severity of a multifaceted disease. Ueckert et al. pioneered its use in

pharmacometrics when they applied IRT to analyse the ADAS-cog score which measures cognitive decline

in patients suffering from Alzheimer’s disease [21]. By using a latent variable reflecting underlying cognitive

decline and influencing the individual assessments, they showed that disease evolution is better characterised,

allowing a greater power to detect the effect of a treatment [22, 24]. In the present study, an additional

challenge was to take into account the specificities of clinical trials, such as the dropout mechanism associated

with patient relapse, the possibility to have a dose adjustment if there is no improvement at the 2nd week

and an open treatment period. The present study represents the first application of IRT in depression,

and allowed to characterise the time course of the disease in placebo/active treatment in the context of a

randomised clinical trial, through a latent variable representing the depression status.
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The model describing the evolution of the latent variable symbolising depression was driven by the avail-

able data. The pattern of placebo response was compatible with the evolution of patients in real life: in this

work, we assumed a flexible model with an initial decrease in the level of depression followed by a relapse

with a much longer time-frame. Indeed, most MDD patients recover from their depressive episode within the

first year. Some of them remain in a state of remission while others alternate between episodes of depression

and remission [6]. We showed that remission is faster and relapse is slower if patients are on active therapy,

reflecting the known response to agomelatine. Indeed, it has been shown in the literature that agomelatine

has a dual effect on melatonin and serotonergic receptors patients [7] resulting in a faster remission. The

exact mechanism of how agomelatine decreases relapse has not been elucidated; however it was observed in

a rat model of chronic mild stress that the antidepressant effects of agomelatine were still observed on week

after cessation of agomelatine treatment [57] suggesting that downstream agomelatine activation mechanisms

(i.e. neuroplasticity, increase on trophic factors including brain-derived neurotrophic factor) could have a

main contribution to this effect. Several models have been proposed in the literature [51, 52, 53, 54] to

characterise the evolution of depression. Russu et al. presented a way to integrate the flexible dosing designs

in the model, but all of these models aimed to describing the HAMD-17 score time course. Our structural

model of the placebo response is based on the model of Holford [52] and integrates the model used by Gomeni

for the remission. For the drug effect model, Mould described the drug effect evolution as a symptomatic

effect, i.e. a temporary evolution from placebo until the end of treatment, which corresponds to the second

model we tested. It has been shown that the time spent in a remission period and the history of recurrent

depressive episodes were predictive of the risk of additional episodes [2]. This suggests an alternative model

where relapse could be modelled using a time-to-relapse model. However, the study would require a very

long observation period as cycles in depression may occur over periods of years, which would be infeasible

for clinical trials. To allow for some patients not relapsing, we attempted to use a mixture model on the

parameter controlling relapse rate, but we could not identify a subpopulation with near to zero relapse.

In the first stage of model building, we tested different combinations of longitudinal model, dropout

model and link function to select the one which best explained the available data. Because of the relationship

between dropout and evolution of depression status, a sequential analysis considering only the evolution of

depression without taking into account different dropout rates would not have been appropriate. For the

IRT model, we assumed that the latent variable affected all the symptoms of the depression captured by

the HAMD-17 scale, while the difficulty of the different items reflected their association with the levels of

depression. Applications of this methodology in other therapeutic areas such as Parkinson’s disease [30]

suggested that several latent variables may be introduced in multifaceted pathologies, each of them being

associated with different symptom groups. We evaluated this possibility here using the method proposed by

Gottipati et al. [30] which looks at correlations between items on the basis of standardised residuals. We

found that the correlations were small (Fig. S6). Despite the multidimensional nature of the HAMD scale,

we therefore chose the most parsimonious model with a single latent variable.

The model selected by combining the longitudinal and dropout components provided a first description

of the data, but evaluation graphs showed discrepancies when stratified according to treatment group. In

particular, we noticed a systematic difference between non-responders, who were prescribed an increase in

dose, and responders who continued on the same regimen. This assessment was performed early during

the clinical trial, as it took place after 2 weeks while the entire study duration was 6 months or 1 year.

This was included, as in the work of Russu et al., in the model as an a priori covariate, here delaying and

slowing the remission phase. To take into account this information in their model, Russu et al. assumed

that parameters associated with remission and relapse take distinct values before and after the time of dose

change, but this model was not identifiable with our data. Another discrepancy between model predictions

and observations was apparent for study [Goodwin2009], which started with an open treatment period of 8

to 10 weeks. Accounting for the fact that subjects had a faster remission when they knew they were being
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given an active treatment improved the model. We estimated that this effect, which can be considered as an

expectancy effect due to the open label design, is about 166% of the drug effect at that time (for patients

who don’t have a dose escalation). This result must however be interpreted cautiously as the expectancy

effect we observed in a controlled clinical trial may not necessarily be extrapolated to a general population.

The quantification of those effects which are much higher than agomelatine effect shows their importance in

depressed patients and the interest of lifestyle or psychotherapy interventions.

One of the challenges of this work was to account for dropout. As the dropout is mainly related to the

level of the depression, values are missing not at random. Several models for dropout were tested, and the

model selected involved MNAR depending on the improvement of depressed status relative to the baseline

value, which was jointly modelled with the longitudinal evolution of the depression. Note that the depression

level is modelled as an unobserved latent variable inferred by the changes in the items of the HAMD-17

score. One issue when parametrically modelling the dropout is that it can be sensitive to the assumptions

made, for instance concerning the shape of the baseline hazard model. To evaluate these assumptions, we

looked at visual predictive checks. Given the complexity of the data, with several treatment sequences and

studies with specific design characteristics, we considered that the adequacy between the prediction and the

Kaplan-Meier estimation of the dropout was acceptable, despite a trend toward a small overestimation of the

dropout for patients in a treatment period. We tried to fix this issue by adding an impact of the treatment

sequence on the dropout without success. In our model, the dropout process was essentially driven by the

latent variable, and dropout due to adverse event or non-medical reasons would not be well captured without

adding competing dropout mechanisms. Another limitation is that we did not take into account the dropout

instigated by the clinicians based on the CGI-I score which was implemented in some studies at weeks 6, 10

and 12. Although this is clearly a limit and a potential source of bias in our modelling, the impact on the

drop-out seems to be minimal (up to 0.1 points of difference) which would not raise serious doubts about the

predictions of the disease’s evolution.

Data-splitting allowed predictive performance to be evaluated more realistically, and could be performed

here given the large number of observations. The predictive performance of the model in the evaluation

dataset was good. Describing the placebo and active treatment response jointly with the risk to dropout

yielded more accurate predictions from the model.

We estimated the magnitude of the effect of agomelatine versus placebo by simulating clinical trials using

the model developed and assessing the difference in HAMD score at week 6 between the two arms. A difference

in HAMD-17 at week 6 (42 days) is considered a common statistical endpoint in depression clinical trials. The

effect estimated here (SMD: 0.58) was however higher than was previously reported for agomelatine in the

various meta-analyses performed on the drug (SMD: 0.26 [58], 0.18 [59], 0.24 [10], 0.26 [9]). This was mostly

due to the limited number of studies included here compared to the other meta-analysis and also driven by

the study [Kennedy2014]. The five trials combined in the present analysis are a subset of the clinical trials

conducted on agomelatine and presented in [10]. Trials were selected based on a similar clinical management

of the placebo arms, as well as the availability of individual HAMD scores to allow longitudinal modelling

of the evolution of depression with IRT. However, the difference between placebo arm and treated arm in

[Kennedy2014] was larger than in the other studies with agomelatine, and is consistent with the SMD of 0.7

reported in [10] for that particular study and in the meta-analysis performed by [9]. From the time-course

of HAMD-17 score in the different studies, this appears to be due to a slower remission in the placebo group

in [Kennedy2014], whereas the impact of the drug in the treated group was similar when compared to the

other studies (see Fig. 1). A more conservative estimate of 0.26 for the effect size has been reported in the

meta-analysis by [9] and reflects the significant but modest effect of agomelatine.”

We performed additional simulations using the model to assess the benefit of agomelatine when taking

into account differential dropouts between treatment arms. Indeed, dropout is a censoring mechanism and

the remaining patients are those who have responded most effectively to placebo or active treatment. Thus
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the difference from placebo is biased since it does not reflect the actual one. Characterising the dropout and

jointly estimated the IRT sub-model and the latent variable allows to have an unbiased estimation of the

parameters, and thus to offer the possibility to simulate individual uncensored profiles. These simulations

showed a difference of 4.3 points on the HAMD-17 scale at the 6th week compared to 3.1 points taking into

account patient dropout. As illustrated here in the context of depression, taking dropout into account in

the modeling allows to access to the actual value in these clinical trials of the drug effect. This shows the

benefice of this framework for the design of future clinical trial with more powerful statistical tools.

One of the advantages of modelling each item using IRT is that we can evaluate which items are sensitive to

a change in the depression level, and thus are sensitive to differentiate between active and placebo treatment.

Since the 60s, the 17-item version of the HAMD has become the standard for clinical trials with a widespread

use. Limitations have been largely discussed and mainly concern a lack in the identification of a change in

the severity of the disease [17], the fact that the items measure different constructs, the presence of unequal

weights attributed to different symptoms domains and the failure to include all symptom domains such as

reverse neurodegenerative symptoms [60]. Thus, several scales have been developed including Bech [16],

Maier[19], Gibbons[17], Toronto[20] subscales. The top 9 items we found to be most informative are all part

of these subscales. The strength here is that the association between symptoms and diseases is quantitatively

assessed. Several publications showed that this methodology increases the chances of detecting a difference

between treatments compared to an analysis based on the total score. In their example, Buatois et al.

[22] found that IRT methodology in the context of NLMEM is at least as powerful as using a subscale. As

presented by Ueckert [50], this is an ideal framework to include other outcomes as the association is quantified

and would allow a better characterisation of the level of severity of the disease. It would be very interesting

for future work to integrate different measures such as neurodegenerative symptoms or the CGI scale. Also

given the complexity of such models, a simplified subscale with a single factor structure could be envisaged.

Conclusion

In conclusion, the evolution of the depression level in five phase III clinical trials was analysed by com-

bining IRT and pharmacometric modeling. The joint framework with integration of the dropout considers

the symptoms of the HAMD-17 scale, the disease progression and the drug effect which were more accurately

assessed by integrating and modelling the dropout. This allowed us to have access to the actual therapeutic

effect in clinical trial setting. The obtained sensitive set of items was in accordance with the literature and

through the IRT methodology, the link between symptom and disease was quantitatively assessed.
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[46] Heun R, Ahokas A, Boyer P, Giménez-Montesinos N, Pontes-Soares F, Olivier V. The efficacy of agome-

latine in elderly patients with recurrent major depressive disorder: a placebo-controlled study. J Clin

Psychiatry. 2013;74(6):587–94.

[47] Jacqmin P, Snoeck E, Van Schaick E, Gieschke R, Pillai P, Steimer JL, et al. Modelling response time

profiles in the absence of drug concentrations: definition and performance evaluation of the K–PD model.

J Pharmacokinet Pharmacodyn. 2007;34(1):57–85.

[48] Cohen J. Statistical power analysis for the behavioral sciences 2nd edn. Erlbaum Associates, Hillsdale;

1988.

[49] Kjellsson MC, Zingmark PH, Jonsson EN, Karlsson MO. Comparison of proportional and differ-

ential odds models for mixed-effects analysis of categorical data. J Pharmacokinet Pharmacodyn.

2008;35(5):483.

[50] Ueckert S. Modeling composite assessment data using item response theory. CPT Pharmacometrics

Syst Pharmacol. 2018;7(4):205–218.

[51] Gomeni R, Merlo-Pich E. Bayesian modelling and ROC analysis to predict placebo responders using

clinical score measured in the initial weeks of treatment in depression trials. Br J Clin Pharmacol.

2007;63(5):595–613.

Page 14

Acc
ep

ted
 M

an
us

cri
pt



[52] Holford N, Li J, Benincosa L, Birath M. Population disease progress models for the time course of

HAMD score in depressed patients receiving placebo in anti-depressant clinical trials. Abstracts of

the XI annual meeting of the population approach group in Europe. 2002;Abstr. 311. Available from:

www.page-meeting.org/?abstract=311.

[53] Mould DR. Developing models of disease progression. In: Ette EI, Williams PJ (eds) Pharmacometrics:

the science of quantitative pharmacology. 2007;p. 547–581.

[54] Shang EY, Gibbs MA, Landen JW, Krams M, Russell T, Denman NG, et al. Evaluation of struc-

tural models to describe the effect of placebo upon the time course of major depressive disorder. J

Pharmacokinet Pharmacodyn. 2009;36(1):63–80.

[55] Bauer JR, ICON S Development. NONMEM users guide: Introduction to NONMEM 7.3.0. Maryland:

2013;.

[56] Russu A, Marostica E, De Nicolao G, Hooker AC, Poggesi I, Gomeni R, et al. Joint Modeling of Efficacy,

Dropout, and Tolerability in Flexible-Dose Trials: A Case Study in Depression. Clin Pharmacol Ther.

2012;91(5):863–871.
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Tables and Legend to Figures

Table I: Study design

Study
Treatment sequence

(compulsory/optional period)
Number of

patients
Period length

(week)
Study duration

(week)
Median number of
visits (min-max)

[Goodwin2009]
TO+P/P
TO+T/T

174
164

8*+24/20 52
13 (6-15)
14 (6-15)

[Olie2007]
P/T
T/T

119
116

6/46 52
12 (2-12)
12 (2-12)

[Kennedy2006]
P/T
T/T

105
106

6/46 52
12 (2-12)
12 (2-12)

[Kennedy2014]
P/P
T/T

141
406

6/18 24
8 (2-8)
8 (2-8)

[Heun2013]
P/P
T/T

70
148

8/16 24
9 (2-9)
9 (2-9)

*for some patients, the open treatment period was extended to 10 weeks. TO: open treatment period, P: Placebo period, T:
Active treatment period

Table II: Characteristics of the population.

Characteristic Median (min-max)

Weight (kg) 70.5 (36.3-210)
Body mass index (kg/m2) 25.4 (14.2-58.2)

Body surface area (m2) 1.79 (1.25-3.13)
Creatinine (µmol/l) 73 (19-179)

Creatinine clearance (mL/min) 96.45 (28.36-427.81)
Age (year) 48 (18-87)

Height (cm) 166 (138-195)
Smoking habits (% of no smoker, has stopped, smoker) 64-10-27

Gender (% Female) 70.5

Table III: Parameter estimates wih their relative standard errors (RSE%)

Parameter Value (RSE%)
Between-subject variability

(RSE%)
D0 0 (-) 0.45 (4.3%)
Drem 8.39 (2%) 0.37 (3.0%)
Trem (year) 0.16 (4%) 0.82 (1.7%)
Trel (year) 1.66 (7%) 1.27 (3.4%)
γ (-) 0.88 (2%) 0.32 (3.7%)
αTrem 3e-04 (11%) 1.41 (3.8%)
αTrel 1e-04 (34%) -
Teq (year) 0.06 (6%) -
k (-) 3.29 (5%) -
λ (year−1) 5.99 (11%) -
β 12.72 (6%) -
βopen 1.52 (12%) -
βadj 0.27 (12%) -
Topen (year) 0.11 (13%) -
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Figure 1: Mean value with the 95% confidence interval of the total HAMD-17 score, stratified by study. Each
colour represents the treatment sequence. The vertical line shows the end of the compulsory period,except
for study [Goodwin2009] where two bars denote respectively the end of the open treatment period (dashed
line) and the end of the compulsory period (continuous line).

Figure 2: Probability for each score for all the items of the HAMD scale predicted by the IRT model (based
on item specific parameters - dashed line) compared to the fit of a generalized additive model (GAM) with
cross-validated cubic spline as a smoothing function (continuous line with 95% confidence interval)
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Figure 3: Internal evaluation: visual predictive check of the HAMD-17 total score stratified by dose ad-
justment (by row) and treatment sequence (by column). Median, 5th and 95th percentiles in the data are
compared to the model simulated median, 5th and 95th percentiles (with the 90% prediction interval in
shaded area). The vertical black line represents the end of the first period.

Figure 4: Internal evaluation: visual predictive check of the dropout stratified by dose adjustment (by
row) and treatment sequence (by column). The Kaplan-Meier estimates based on the data (mean and 90%
confidence interval) is compared to the model simulated median and the 90% prediction interval (shaded
area). The vertical black line represents the end of the first period.
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Figure 5: Predicted agomelatine improvement in HAMD in the context of a clinical trial with dropout (Left)
or assuming no dropout (Right). The black continuous line represents the threshold between a beneficial
(negative values: agomelatine is better) and a non-beneficial effect (positive values: placebo is better). The
red continuous line represents the median difference from placebo with its 95% confidence interval (red shaded
area)

Figure 6: Contribution of each item based on the Fisher information and stratified by severity. The greater the
contribution for a given item, the more differences in the corresponding score are informative on underlying
depression. Only items where the fisher information represented over 5% of the total information at least for
one degree of severity are included.
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Supplementary material

Methods

Data

The data for this paper was collected in five phase III ([36, 43, 44, 45, 46]), multi-centre, placebo-

controlled, double-blind studies with similar inclusion criteria. One clinical trial ([Goodwin2009]) was de-

signed to evaluate the efficacy of agomelatine in the prevention of depressive relapse. In the other four trials,

the objectives were to assess the efficacy of the drug compared to placebo after a 6-week treatment, and

to provide additional safety data on agomelatine. A summary of the main characteristics of each trial can

be found in table I. All studies included men and women aged between 18 and 65 years, except for study

[Heun2013] where patients were over 65 years old. The main inclusion criterion was a diagnosis of moderate

to severe major depressive episode according to the DSM-IV-TR criteria and requiring an antidepressant

treatment. Written informed consent was obtained prior to inclusion.

In all studies, the main clinical endpoint was the value of the Hamilton Depression Rating Scale, a

questionnaire composed of 17 items, at the end of the treatment period. With 3 to 5 possible answers to each

item, the total HAMD-17 score can range from 0 (not depressed) to 52, with severe depression characterised

as a score of more than 24. The questions are shown in Fig. S7. They evaluate different components of

depression acting through sleep, anxiety, mood, somatic and psychotic disruptions. Depression status was

also monitored throughout the study by recording the HAMD-17 scale at each visit. The schedule of planned

visits varied across studies, but overall patients were followed every 2 weeks during the mandatory period,

then visits were scheduled every 4 to 9 weeks. At each visit, CGI scale was also assessed. It was developed

to briefly give the clinician’s point of view by summarising all the clinician’s knowledge of the patient in two

items: CGI-S; severity of psychopathology from 1 to 7 and CGI-I; change from the initiation of treatment

on a similar seven-point scale. A higher scores on CGI-I represents more severe depression.

All trials included a mandatory double-blind treatment period and an optional period, based on investiga-

tors and/or patients agreement. During the optional phase, patients continued to receive the treatment they

had been randomised into in a double-blind manner except for patients under placebo in studies [Olie2007,

Kennedy2006] who were switched to a 25 mg dose of agomelatine in the extension phase. During the double-

blind periods (both mandatory and extended), patients were instructed to take two tablets orally once a

day, during dinner, with a glass of water. When patients were randomised in the treatment group (non fixed

25 mg), they were assigned during the first 2 weeks to the dose 25mg. If the improvement of the patient’s

depressive condition was deemed insufficient at the end of the second week for all studies (even in the open

phase), the dosage in agomelatine was increased from 25mg to 50mg for the rest of the study, by substituting

a placebo tablet in double-blind conditions. As a result, the treatment consisted in 2 placebo tablets, agome-

latine 25 mg (25 mg agomelatine tablet + 1 placebo tablet) or agomelatine 50 mg (2 x 25 mg agomelatine

tablets).

In [Goodwin2009], the goal was to assess the long term efficacy through a prevention to relapse study.

Patients were considered to have relapsed when HAMD-17 is greater than 16 during the relapse phase (where

the severity of the disease increase). This study was the only one to begin with an open treatment period

(TO) before the randomisation into the Placebo (TO+P) or Treatment group (TO+T) at week 8. If the

patient was not eligible for randomisation (according to independent expert) at week 8, he/she continued the

open treatment period until week 10 where a second assessment took place. Patients were withdrawn from

the study if they did not fulfil the randomisation criteria. To summarise, only the good responders at week

10 are randomised. If they dropped out before randomisation, their data was not included in the analysis.

In the other four studies, the statistical analysis assessed short term efficacy by comparing the HAMD-17

score at week 6 or week 8 between active and placebo treatment. In studies [Olie2007] and [Kennedy2006],
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patients were randomised at initiation in the placebo or treatment group; at week 6, patients in the treatment

arm continued under the same dosage and all patients under placebo received 25mg of agomelatine (P+T

or T+T respectively). In [Kennedy2006], only patients with CGI-I score ≤ 3 at week 10 were eligible to

continue the study after this visit. In [Heun2013], patients were randomised at initiation in the placebo or

treatment group, but patients continued in the same arm after 8 weeks during the extension period (P+P or

T+T respectively), and the total duration of follow-up was 6 months instead of one year. However during

the extension period at W12 visit, only the patients having CGI-I ≤2 were allowed to continue.

Study [Kennedy2014] also had, as study [Heun2013], a follow-up duration of 6 months, but patients were

randomised in 4 parallel groups at treatment initiation: placebo, dose 10mg, fixed dose 25mg and dose 25mg

increased up to 50mg if no improvement after 2 weeks. For [Kennedy2014], all the patients having CGI-I ≤3

at W6 visit were entered in the extension period with the same treatment subject to patient’s agreement.

Patients having CGI-I > 3 at W6 visit did not continue into the double-blind extension treatment period.

Then all the patients having CGI-I ≤2 at W10 visit could continue in the extension period. The patients

having CGI-I > 2 at W10 visit were withdrawn from the study.

Height (HT), age (AGE), smoking habits (SMOK) and gender (SEX) were recorded at inclusion. Weight

(WT), body mass index (BMI), body surface area (BSA), creatinine (CREAT) and creatinine clearance

(CRCL) were recorded at each visit. A summary of the characteristics at inclusion of the populations in each

clinical trial can be found in table II in the main text.

Modelling strategy

The IRT model, longitudinal model and the main components of the final drug effect and dropout models are

described in Results. In this appendix, we give additional details on the models tested during model building

and on the model building strategy.

Drug effect

As stated in the main text, in the absence of individual pharmacokinetic measurements, agomelatine

concentrations in the effect compartement, CE(t), were predicted using a K-PD model based on the individual

dose regimens recorded for all studies.

Patients treated for depression usually manifest an improvement in their condition, apparent in a decreased

HAMD score. When the treatment is discontinued, the depression status tends to return to a similar evolution

as would be observed under placebo. This has been termed a symptomatic effect, as the drug is seen to act

on the symptoms of the disease and not modify its underlying course [61]. Considering the time course

of depression, three specific mechanisms of action were investigated for agomelatine. The first mechanism

assumes that the drug speeds up the decrease (i.e. improvement) of the depressed status D(t) represented

by the remission scale Krem(t), through a linear or an Emax model:

E(t) = α× CE(t)

E(t) = Emax×CE(t)
EC50+CE(t)

(10)

where E was modelled as a multiplicative effect on the remission scale:

Krem(t) = Krem(t)(1 + E(t)) (11)

A second mechanism assumes an immediate improvement in depression when the patient receives treat-

ment, and is modelled as an additive effect on the placebo response through a linear or Emax model:

D(t) = D(t)− E(t) (12)
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where D(t) is from equation (3) (main text).

A third mechanism is through preventing relapse, and we modelled this as a drug effect decreasing the

relapse rate. Again, both linear and Imax model for the dose-effect relationship were tested.

I(t) = α× CE(t)

I(t) = Imax×CE(t)
IC50+CE(t)

(13)

where I is the fraction of decrease of the relapse rate (Krel(t)).

Krel(t) = Krel(t) (1− I(t))
(14)

The parameters associated with the drug effect were assumed to follow a log-normal distribution, excepted

for Imax which was assumed to follow a logit-normal distribution.

Dropout Model

During the course of the five trials 35% of patients dropped out, for lack of effect (58%), non-medical

reasons (20%), adverse events (13%), remission (5%), protocol deviation (3%) or loss to follow-up (1%). In

the context of depression and accounting for dose escalation, Russu et al. [56] showed that the dropout

must be considered as MNAR since the main cause is a problem of efficacy and therefore a high level of

disease severity. They modelled the dropout mechanism through a parametric time-to-event model to ensure

unbiased estimators. Patients treated for depression tend to stop taking their medication or to drop out

when they do not feel any improvement in their status, therefore the risk of dropout was assumed to be

influenced by the overall depression score captured by the latent variable. The study duration acts as a

censoring mechanism.

Let the random variable T denotes the time to dropout. In standard survival analysis, the survival

function S(t) is a meaningful measure giving at each time t > 0 the probability to have survived up to time

t event-free. Assuming that this probability equals 1 at t = 0, we have:

S(t) = Pr(T ≥ t) (15)

The hazard function, denoted by h(t), describes the instantaneous risk of having an event at time t for

an individual who survived up to that time. It can be expressed as:

h(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)
dt

(16)

Survival can be directly expressed as a function of the hazard (17):

S(t) = exp

(
−
∫ t

0

h(x)dx

)
(17)

Modelling the hazard is often more relevant than modelling survival as the hazard function can adjust

throughout the study to reflect changes in disease status and treatment. Here we adopted the usual decom-

position of hazard in a parametric baseline risk function h0(t) and an exponential function of risk factors:

h(t|θi) = h0(t)× exp (β · f (t|θi)) (18)

where β is the strength of the link between the risk and a function f , depending on the individual parameters

θi.
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In this study, we tested different models for the hazard. First, we assumed a base model where hazard

does not depend on depression status (no link, β = 0). Then, we tested various models for the link function,

estimating the strength of the link through the parameter β:

• dropout at time t may be related to the depression level at that time, f (t|θi) = D (t|θi)

• dropout may be related to the cumulative burden of depression up to time t, f (t|θi) =
∫ t

0
D (x|θi) dx

• dropout at time t may be related to a difference between the depression level at baseline and at that

time, weighted by the maximal amplitude of the placebo effect, f (t|θi) = 1− D(t|θi)−D0

Drem

To represent the baseline risk h0, standard risk functions were used, like the Weibull (h0(t) = k
λ

(
t
λ

)k−1
),

and Gompertz (h0(t) = λek·t) models.

Model building strategy and evaluation

The data was split into a building and an evaluation dataset, comprising respectively 70% and 30% of

the data. Data-splitting was stratified on treatment sequence and study. The model building process was

performed on the learning dataset (steps 1 to 6 below), and the final model was evaluated both on the learning

(internal evaluation) and then on the evaluation dataset (external evaluation). Model selection was based

on the Bayesian Information Criterion (BIC) and parameter precision (relative standard error RSE%). For

covariate selection, statistical relevance was evaluated using a Wald test evaluating the significance of the

slope of a linear model for continuous covariates. For categorical covariates, we performed a Wilcoxon test

(binary covariate), or a Kruskal-Wallis test (multi-level covariate). Model building proceeded in the following

series of steps.

Step 1: initialisation

The first step was to obtain initial estimates for the item-specific parameters in the IRT model. We estimated

them from the population of patients who did not receive the treatment, corresponding to data at baseline

for all subjects, and data from the placebo arms. This dataset provided information on the evolution of D up

to 24 weeks, which was the maximal duration of follow-up for placebo patients in [Kennedy2014, Heun2013].

The value of the latent variable at baseline was supposed to be normally distributed, and for maximum

flexibility an unstructured latent variable model was used to take into account disease progression over time,

estimating the mean values of D at weeks {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24}:

D0 ∼ N(0, 1)

D = D0 − βj with j the jth occurrence
(19)

To evaluate the adequacy of ICC and identify misfit, we used non-parametric smoothing splines to fit

the relation between the probability for each score depending on the level of the predicted value of the

latent variable. We then compared the non-parametric smoothing splines with the predicted ICC from the

estimated 69 item specific parameters. Generalised additive models using binomial distribution were used

with cross-validated cubic splines.

Step 2: structural and variability model

The 69 item specific parameters estimated above were then fixed during the model building process (steps 2

to 4). The goal was to determine a structural KPD and dropout model describing the data. D0 was fixed to 0

but its inter-individual variability was estimated. Since there is no consensus in the model building strategy

for joint models, combinations of possible models of placebo effect, drug effect and dropout were tested. The

best model amongst the 48 models tested was selected as the one with the lowest BIC.
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The parameters for all these models were estimated assuming a diagonal variance-covariance matrix to

describe the variability of the random effects. Then for the best model, a full variance-covariance matrix was

estimated. Then, block matrix was built based on the full matrix but with non-diagonal elements associated

with moderate correlation and adequate estimation accuracy (RSE < 50%). The model with the lowest BIC

was selected.

Step 3: refining the model

Goodness of fit plots, including VPC, were produced to evaluate the intermediate models. The unstratified

VPC from the final model in Step 2 showed a strong underestimation of the effect, both in the remission

and relapse phases. The plots were then stratified by treatment sequence and dose adjustment (at week 2).

The group who received treatment in an open administration period showed consistent overprediction of the

disease. Also, a delay was apparent in the HAMD decrease for subjects who required a dose adjustment after

two weeks, suggesting the treatment acts more slowly in these patients or that its effect only appears after

the dose increases. These factors were included in the model as follows.

First, systematic differences between open and blinded treatment periods were accounted for using an

additional model. A simple way to do this is to consider open treatment as a binary covariate that has an

impact on the remission scale, as in the following equations:

Krem(t) = Krem(t)(1 + βopen) (20)

Alternatively, we assumed that open treatment acts like a symptomatic effect with a temporary improvement:

D(t) = D(t)− βopen
(

1− exp
(
− log(2)
Topen

· t
))

if t ≤ trand,

D(t) = D(t)− βopen
(

1− exp
(
− log(2)
Topen

· trand
))
× exp

(
− log(2)
Topen

· (t− trand)
)

else (21)

where trand corresponds to the randomisation end of the open treatment period and is defined by the design (8

or 10 weeks). Two parameters were estimated in this model: Topen, representing the half-life of improvement,

and βopen, reflecting the maximal improvement from D(t). Those two models were tested and the one with

the lower BIC and best parameter precision. Moreover, the primary outcome in [Goodwin2009] was the

relapse so patients who dropped out in the open treatment period were not included in the dataset. Thus

only for this study, the risk to dropout was null during this period.

Second, dose adjustment after 2 weeks was handled by defining a binary covariate with value 1 for the

subjects who required a dose change. As these patients did not experience an improvement in the level of

depression by the end of the second week, we modelled this by adding a fixed lag-time of two weeks, and

introducing a covariate effect on the remission scale, as follows:

Krem(t) = Krem(t)(1− βadj) (22)

Third, we tested combinations of drug effect on Trem and Trel.

Step 4: joint estimation of all parameters

During steps 2 and 3, the item specific parameters remained fixed to the estimates obtained using an unstruc-

tured model of the latent variable in step 1. Once the structural model and the impact of design elements

had been defined, a simultaneous estimation of all of the parameters for the IRT/K-PD/dropout model was

performed to obtain unbiased estimates of the item specific parameters, taking into account the model for

the latent variable. Individual estimates of all the parameters in the model (Empirical Bayes Estimates, or

EBE) were obtained and goodness of fit plots were checked for model adequacy.
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Step 5: covariate selection

The value at inclusion of continuous covariates (WT, HT, AGE, BMI, BSA, CREAT, CRCL) and categorical

covariates (SMOK, SEX) were recorded. They were tested in a Cox model for time to dropout using a stepwise

procedure based on likelihood-ratio test with a threshold on the p-value of 0.05 in the forward selection and

0.001 in the backward elimination. Then they were integrated in the exponential term of the hazard function

(proportional hazard). For their impact on longitudinal process, covariates were tested for their potential

correlation with the EBE, assuming a linear model with a Wald test on the slope for continuous covariates,

a Wilcoxon test for gender covariate, and a Kruskal-Wallis test for smoking habit covariate. To take into

account multiple tests, a relationship was considered to be statistically significant only if the p-value was

lower than 0.001. If the relation was both statistically significant and clinically relevant, they were integrated

in the model as follows. For continuous covariates the model was:

θi = µ+ ηi + βΛ × (Λ−median(Λ)) for parameters normally distributed

log(θi) = log(µ) + ηi + βΛ × (Λ−median(Λ)) for parameters log-normally distributed,
(23)

and for categorical covariates we assumed:

θi = µ+ ηi + βΛ,n × 1Λ=n for parameters normally distributed

log(θi) = log(µ) + ηi + βΛ,n × 1Λ=n for parameters log-normally distributed
(24)

with n ∈ {2, · · · , p} and p the number of categories. βΛ represents the impact of the covariate on parameters

and Λ the considered covariate (e.g. Age, Sex). For categorical covariates, µ is the value for the reference

and βΛ,n is the fractional change for other categories.

The covariates retained both in the longitudinal and dropout sub-models were then directly integrated in

the full model.

Step 6: evaluation

To evaluate the best model, we performed visual predictive checks (VPCs) of the total score (HAMD-17)

by comparing the observed 5th, median and 95th percentiles to the predicted ones (with the 90% prediction

interval for each boundary) both in the learning and the evaluation dataset. Predictions of the total score

were based on simulations of 1000 datasets on item level using the best model. For each dataset and patient,

time-to-dropout was simulated and longitudinal observations (score for each of the 17-th items) according to

the study design were simulated up to the time-to-dropout. The total HAMD-17 score was derived from the

item-level scores in the simulations and used to plot a VPC for the clinical outcome.

Model application

Impact of dropout on the computation of the difference from placebo

Based on the model and parameter estimates, the median difference between active and placebo treatment

was predicted over time by simulating individual trajectories over 1 year. 100 trials were simulated according

to table SII. The sample size in each group were based on the data. In clinical trials, patients who relapse

drop-out from the study and their clinical data are not recorded after this time. Thus the best responders

are over-represented over time decreasing the difference. This is illustrated by using the same simulations

but by taking into account only observations occurring before the dropout time, which was simulated by our

model. Then the median difference between both arm was computed over time. Because of the computational

burden, we only did 100 simulations, so the 90% prediction interval of this difference was computed instead

of the 95% interval.
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We obtained the predicted HAMD-17 score as a sum of the probabilities of the score for each item:

HAMD17 =
17∑
s=1

{2,4}∑
K=0

K × P (Y = K)

 (25)

where the probability of each score over time was defined in the IRT model according to equation (2), s is

the item index, and K the possible score for each item which can be in {0, 2} or {0, 4}.

Sensitive subset of items

Another application of the model was to determine items which were the most sensitive to a change in

the level of the depression. We used the Fisher information matrix and optimal design theory to determine

the most informative items depending on the severity of the disease [21]. If each item is equally informative,

then they each must represent 5% of the information. The information is expressed depending on the latent

variable, i.e. the severity of the disease. The most influent items are defined as the items which represent

more than 5% of the information at least once over the range of the latent variable.

The average proportion of informativeness of the most informative items was calculated according to

different categorised levels of disease severity. To do so, we first categorised the level of severity on the latent

variable scale, then we computed the average proportion in a categorised level of severity. Zimmerman et al.

[62] recommended the following severity ranges for the HAMD score: no depression (0-7); mild depression

(8-16); moderate depression (17-23); and severe depression (≥24). The corresponding value on the latent

variable scale can then be derived using eq. 25. The AUC of the information within each category was

computed and the ratio between the AUC of each of the most influent items and the sum of the AUC of all

the items was determined to compute the proportion of informativeness for the most influent items.

Software

Parameter estimation was performed in the software NONMEM version 7.3 [55] using the second-order

conditional estimation algorithm with Laplacian approximation. NONMEM was also used to perform simu-

lations for the computation of the VPC for the intermediate models, and R-3.5.1 [63] was used for diagnostic

graphs and statistical analyses. For the final model, simulations of clinical trial was performed using the

function simulx of the package mlxR [64] in R. Due to the size of the data, we used our own R script to

create all the VPCs.

Results

Model building

IRT model and item-specific parameters

First, the 69 item-specific parameters in the IRT model were successfully estimated using only placebo

data. At this stage, the relative standard error of these parameters could not be obtained since the covariance

estimate step did not complete and bootstrap could not be performed due to the very long runtime. The

comparison between the fit of a GAM or the IRT (Fig. S1) was however satisfying, supporting the use of

these parameters for the next stage of model building, and these parameters were fixed for model selection.

The second step aimed to determining a structural and variability model which could describe the data

sufficiently well. The parameters and objective function were estimated for the 48 models combining different

features. Parameters Teq, EC50 and IC50 were estimated as fixed effects without variability. At this stage,

almost all of the tested models ran into computational errors and terminated due to rounding errors. All of
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the runs were then re-estimated with updated initial parameter values. The best structural model assumed a

linear model for the dose-effect relationship, with the compound acting on the remission scale. The baseline

hazard model was modelled by a Weibull function, and the link between the latent variable and the hazard

was best described using a weighted difference between the current and baseline value of the latent variable.

The full variance-covariance matrix was tested and all correlations between the random effects were assessed.

We kept the model with correlations not overly poor and maintaining adequate estimation accuracy. The final

model included a block correlation between ηDrem, ηTrem, ηTrel and ηα, which best described the variability

structure. At the end of this phase, the VPC for the total HAMD score showed a reasonably well estimated

remission but an underestimation of the remission scale in the open treatment period. Moreover, there were

an overestimation of the median and the 95th percentile for late time points. For patients who needed a dose

adjustment, the HAMD-17 scores in the data did not decraese while the model, on average, predicted an

instantaneous improvement. Incorporating design elements highly improved the fit. Adding a fixed lag-time

of 2 weeks in the longitudinal evolution and a decreased remission scale for patients who required a dose

adjustment at the second week improved the BIC by 441 points. Adding a fixed lag-time (set to the end of

the open treatment period) in the hazard model and a symptomatic open treatment period effect according

to (eq. 8) further improved the BIC by 173 points.

Finally, we added a second effect of the drug, assuming it also acted to slow the relapse rate, and this

improved the fit again (60 points). The 95th confidence interval on this parameter, from 3.4E − 05 to

1.7E − 04, computed based on the RSE excluded 0.

The 82 parameters (i.e. 69 for IRT, 10 for the KPD submodel and 3 for the time-to-event model submodel)

and the 12 components of the variance-covariance matrix were then jointly estimated. The run successfully

converged, and we could obtain estimates of the standard errors for all parameters. The BIC was much lower

(a drop of 2194 points) after re-estimation, with a final objective function of 242311.

The link between the covariates and the EBE was investigated using a linear relationship (expressed as a

fraction of increase from reference for categorical covariates). Out of the 54 tests, only an association between

age and the value at baseline of the latent variable was found to be significant (p = 2.8e− 05). However, the

magnitude of the effect was not clinically relevant with 0.4 points of difference on the total HAMD score for

a patient 10 years older compared to the median age, so the age was not retained in the final model.

Parameter estimates

Except for the IRT submodel, parameters of the model and their relative standard errors are reported

in table III in main text. The parameter estimates for each item of the IRT submodel can be found in

supplementary Table SI.

All parameters were precisely estimated with very small estimation errors reported by NONMEM. On

the other hand, the variability for some parameters, Trel and αTrem, was found to be quite high. The

high variability for the half-life of relapse Trel can be due to the fact that some patients will relapse (short

half-life), and some will stay stable at low values of depression status (very high half-life). As a consequence,

the estimated time to relapse for a typical individual is very high, greater than the maximal duration of

clinical trials of one year. This is confirmed by the individual distribution of the parameter Trel conditional

on having relapsed or not (dropout) which indicates a significant difference in the distribution mode. Indeed,

the relapse half-life mode of patients who dropout from the study is 0.25 years while that of patients who

complet the study is 4.25 years. We attempted to use a mixture model to account for this but this was not

successful. D0, Drem, αTrem, αTrel, and βopen are variables on the logit scale, i.e. the scale of the latent

variable. The typical individual starts at D0 = 0 and tends to the estimated Drem value (−8.39 points) if

there is no relapse. For patients under placebo, the ”half-life” of the remission is equal to 0.16 year (slightly

less than 2 months) and the half-life of the relapse is estimated to be about 1.66 year. The drug acts both

by increasing the scale of the remission, implying a faster improvement (24% of increase for the 25mg dose),
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and by reducing the slope of relapse (8% of decrease for the 25mg dose), so that it takes longer to relapse.

To better illustrate the effect of drug treatment and dose adjustment according to the model and equa-

tion 25, we predicted in Fig. S2 the evolution of the total HAMD-17 score for a typical subject under

placebo/active treatment, experiencing or not a dose adjustment at the second week; we also considered

whether the treatment was blind or open. After 6 weeks, the mean HAMD-17 score for patients who don’t

have a dose adjustment at week 2 was 13.2 versus 18.5. This is due both to the delayed improvement due to

the lag-time of 2 weeks included in the model, and to the remission scale, reduced by a factor of 27% for pa-

tients who have a dose increase. The impact of the open treatment period was modelled through a temporary

improvement (symptomatic effect) which increases over time. For a typical patient without dose adjustment,

the difference with the reference (placebo/treatment) at baseline was null. The additional predicted open

effect at the 8th week (randomisation week) was equal to 3.15 points which corresponded to 166% of the

drug effect to that time (difference active/placebo = 1.9 points). At week 8, patients were randomised into

placebo or active arm. The figure shows the predicted residual effect of the open label period and how the

curve tends to reference. The half-life of this decrease equals 5.72 weeks, indicating that this residual effect

disappears after 30 weeks and is negligible (less than 1 point difference) 16 weeks after the end of the open

label period.

The dropout was modelled with a Weibull function for the baseline hazard with an increasing risk (shape

parameter is over 1). If the latent variable is assumed not to have an impact on the hazard (β = 0), the

probability to drop out at one year roughly equals 0, suggesting that the actual dropout is mainly driven by

a change from baseline of the latent variable. We estimate the hazard ratio for a decrease of 5 point on the

total HAMD-17 score to be equal to 8.35. This leads to a 20% decrease in dropout at 1 year.

Model performance

The ability of the model to represent the data and describe different individual profiles is shown in Fig. S3.

The time course of the individual observed and predicted HAMD-17 scores from equation 25 shows the good

adequacy of the model which can describe for example a non-relapser patient as well as a relapser. In each

panel, two individuals were randomly sampled.

The predictive performances of the longitudinal model on the evaluation dataset (30% of the data) are

shown in Fig. S4. Only three patients were in the group with a dose adjustment and treatment sequence

TO + T so the graphs from this panel are omitted. In general, the evaluation shows a reasonably adequacy

between the predictions and the observations. However, for the some strata, the model tends to overestimate

the level of depression for time after 6 months (eg ’No dose adjustment’ & ’TO+P’) which was not the case

in the internal evaluation. This can be due to the low number of patients in this group (40 at the beginning)

and the high rate of dropout which was over 50% after 6 months.

Fig. S5 illustrates the performance of the dropout model in the evaluation dataset. Results are in

accordance to the VPC for the interval evaluation: the model tends to overpredict (Dose adjustment & P+T

/ TO+P / T+T) or underpredict (No dose adjustment & TO+P) the dropout in some groups.
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Complementary Tables and Figures
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Figure S1: Probability for each score for all items of the HAMD scale, predicted by the IRT model using only the
placebo data (based on item specific parameters - dashed line). This was compared to the fit of a generalized additive
model (GAM) with cross-validated cubic spline as a smoothing function (continuous line with 95% confidence interval)

Figure S2: Predicted evolution for typical individuals of the total HAMD-17 score depending on the dose
level (randomised into placebo: blue, randomised into active with 25mg: red) and design elements: dose
adjustment at the second week (left) and open treatment period effect (right).
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Figure S3: Individual trajectories observed (continuous lines) compared to the predicted ones (dashed lines) from the fit.
Each colour represents one sampled individual.
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Figure S4: External validation: visual predictive check of the HAMD-17 total score stratified by dose adjustment (by row)
and treatment sequence (by column). Median, 5th and 95th percentiles in the data are compared to the model simulated
median, 5th and 95th percentiles (with the 90% prediction interval in shaded area). The vertical black line represents the
end of the first period. Due to the very low number of patient (3) in the botttom right box, the results are not shown.
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Figure S5: External validation: visual predictive check of the dropout stratified by dose adjustment (by row) and treatment
sequence (by column). The Kaplan-Meier estimated based on the data (mean and 90% confidence interval) is compared
to the model simulated median and the 90% prediction interval (shaded area). The vertical black line represents the end
of the first period. Due to the very low number of patients (3) in the TO+T group with dose adjustment, the bottom
right box is not shown.

Page 31

Acc
ep

ted
 M

an
us

cri
pt



Somatic symptoms gastro−intestinal

Loss of weight

Hypochondriasis

Insight

Anxiety somatic

General somatic symptoms

Agitation

Anxiety psychic

Depressed mood

Work and activities

Feelings of guilt

Suicide

Insomnia: early in the night

Insomnia: middle of the night

Insomnia: early jours of the morning

Retardation

Genital symptoms

S
om

at
ic

 s
ym

pt
om

s 
ga

st
ro

−
in

te
st

in
al

Lo
ss

 o
f w

ei
gh

t

H
yp

oc
ho

nd
ria

si
s

In
si

gh
t

A
nx

ie
ty

 s
om

at
ic

G
en

er
al

 s
om

at
ic

 s
ym

pt
om

s

A
gi

ta
tio

n

A
nx

ie
ty

 p
sy

ch
ic

D
ep

re
ss

ed
 m

oo
d

W
or

k 
an

d 
ac

tiv
iti

es

F
ee

lin
gs

 o
f g

ui
lt

S
ui

ci
de

In
so

m
ni

a:
 e

ar
ly

 in
 th

e 
ni

gh
t

In
so

m
ni

a:
 m

id
dl

e 
of

 th
e 

ni
gh

t

In
so

m
ni

a:
 e

ar
ly

 jo
ur

s 
of

 th
e 

m
or

ni
ng

R
et

ar
da

tio
n

G
en

ita
l s

ym
pt

om
s

−1.0

−0.5

0.0

0.5

1.0
Correlation

Figure S6: Correlation between the residuals obtained using a single latent variable IRT model
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Figure S7: HAMD-17 scale
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Table SI: Parameter estimates with their relative standard errors (%). a is the discrimination parameter and
b the difficulty parameter for item s and score K.

Parameter Value (RSE%) Parameter Value (RSE%)
1 OBJ 242310.79 bs=11,K=3 3.51 (1.64%)
2 AIC 242500.8 bs=11,K=4 6.06 (7.64%)
3 BIC 243975 as=12 0.67 (1.78%)
4 as=1 1.55 (1.37%) bs=12,K=1 -2.14 (1.48%)
5 bs=1,K=1 -5.32 (0.62%) bs=12,K=2 4.76 (1.89%)
6 bs=1,K=2 2.05 (1.51%) as=13 0.83 (1.36%)
7 bs=1,K=3 1.72 (1.78%) bs=13,K=1 -5.35 (0.74%)
8 bs=1,K=4 2.54 (1.71%) bs=13,K=2 3.24 (1.35%)
9 as=2 0.86 (1.26%) as=14 0.5 (1.42%)

10 bs=2,K=1 -3.78 (0.72%) bs=14,K=1 -5.1 (0.73%)
11 bs=2,K=2 2.67 (1.35%) bs=14,K=2 3.36 (1.56%)
12 bs=2,K=3 4.7 (2.33%) as=15 0.51 (1.49%)
13 as=3 0.72 (2.21%) bs=15,K=1 -2.62 (1.22%)
14 bs=3,K=1 -0.5 (8.38%) bs=15,K=2 2.8 (1.68%)
15 bs=3,K=2 2.61 (2.76%) bs=15,K=3 3.98 (2.28%)
16 bs=3,K=3 3.43 (5.96%) as=16 0.43 (2.18%)
17 bs=3,K=4 5.19 (28.82%) bs=16,K=1 0.47 (17.03%)
18 as=4 0.64 (1.55%) bs=16,K=2 1.89 (3.06%)
19 bs=4,K=1 -2.38 (1.33%) as=17 0.26 (5.73%)
20 bs=4,K=2 2.32 (2.08%) bs=17,K=1 5.69 (8.26%)
21 as=5 0.6 (1.57%) bs=17,K=2 15.61 (8.14%)
22 bs=5,K=1 -3.68 (0.88%) D0 0
23 bs=5,K=2 3.3 (1.69%) Drem 8.39 (1.92%)
24 as=6 0.61 (1.66%) Trem (year) 0.16 (3.51%)
25 bs=6,K=1 -3.18 (0.93%) Trel (year) 1.66 (6.59%)
26 bs=6,K=2 2.7 (1.75%) γ (-) 0.88 (1.38%)
27 as=7 1.27 (1.21%) αTrem 3e-04 (10.98%)
28 bs=7,K=1 -5.55 (0.47%) Teq (year) 0.06 (5.43%)
29 bs=7,K=2 2.14 (1.4%) k (-) 3.29 (4.51%)
30 bs=7,K=3 2.09 (1.41%) λ (year −1) 5.99 (10.82%)
31 bs=7,K=4 2.43 (1.7%) β 12.72 (5.72%)
32 as=8 0.88 (1.44%) βOpen 1.52 (12.04%)
33 bs=8,K=1 -2.85 (0.92%) Tlag (year) 0.04
34 bs=8,K=2 2.64 (1.57%) βadj 0.27 (11.56%)
35 bs=8,K=3 3.94 (3.13%) αTrel 1e-04 (33.68%)
36 as=9 0.52 (1.64%) Topen (year) 0.11 (12.61%)
37 bs=9,K=1 -2.63 (1.23%) ωD0 0.45 (4.3%)
38 bs=9,K=2 3.34 (1.87%) ωDrem 0.37 (3.0%)
39 bs=9,K=3 5.45 (3.07%) corrTrem Drem 0.7 (1.7%)
40 bs=9,K=4 5.18 (9.73%) ωTrem 0.82 (1.7%)
41 as=10 0.85 (1.31%) corrTrel Drem -0.43 (8%)
42 bs=10,K=1 -6.13 (0.68%) corrTrel Trem -0.15 (26.2%)
43 bs=10,K=2 3.22 (1.3%) ωTrel 1.27 (3.4%)
44 bs=10,K=3 3.14 (1.42%) corrαTrem Drem 0.84 (1.7%)
45 bs=10,K=4 3.56 (3.12%) corrαTrem Trem 0.58 (5.3%)
46 as=11 0.78 (1.2%) corrαTrem Trel -0.84 (2.6%)
47 bs=11,K=1 -5.21 (0.49%) ωαTrem 1.41 (3.8%)
48 bs=11,K=2 3.09 (1.2%) ωγ 0.32 (3.7%)
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Table SII: Settings of the clinical trial simulation

Dose Adjustment at week 2 Arm Sample size
No Placebo 253
Yes Placebo 182
No Active 630
Yes Active 146
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