Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, Marie-Axelle Granié

To cite this version:
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, et al.. Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality. TRB 2019 - Annual Meeting Transportation Research Board, Jan 2019, Washington DC, United States. hal-02396553

HAL Id: hal-02396553
https://hal-univ-rennes1.archives-ouvertes.fr/hal-02396553
Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PEDESTRIAN COLLISION AVOIDANCE ON NARROW SIDEWALK: A MEETING BETWEEN PSYCHOLOGY AND VIRTUAL REALITY

Context: NARROW SIDEWALKS

- Pedestrians manage social interpersonal distances
- Encountering two pedestrians is impossible
- Walking in the opposite way on narrow sidewalks when encountering a pedestrian

Problem: Why do we choose to step down or stay on the sidewalk?

- Pedestrian is expected to step down when:
 - He walks fast
 - He is attentive
- For the participants, no gender effects

Goal: To simulate a social virtual pedestrian (non player character) in order to study this kind of situation in virtual environment

Objective:
- To use Social Pedestrian Non Player Characters in VR environment is feasible
- Needs to take into account the empowerment/authority

Social Perception Model
- Speed and attention influence the decision to step down from the narrow sidewalk

Assumption:
- Speed and attention increase the detection time in the ORCA model
- Detection time is then a score.

Results:
- Overall ranking of the model-based videos.
 - d = 0.8
 - Median = 4

Discussion:
- Needs to take into account the empowerment/authority