Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, Marie-Axelle Granie

To cite this version:
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, et al.. Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality. TRB 2019 - Annual Meeting on Transportation Research Board, Jan 2019, Washington, United States. hal-02396553

HAL Id: hal-02396553
https://hal-univ-rennes1.archives-ouvertes.fr/hal-02396553
Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PEDESTRIAN COLLISION AVOIDANCE ON NARROW SIDEWALK: A MEETING BETWEEN PSYCHOLOGY AND VIRTUAL REALITY

Context: NARROW SIDEWALKS

Impact of 3 personal factors were studied:
- Speed (fast - slow)
- Sex (male - female)
- Distraction (texting – non-texting)

Persoanl characteristics (psychological and physical)

Perception model for the virtual pedestrian
- ORCA Model used.
- Different types of collision avoidance (anticipative, reactive).
- Collision avoidance behaviors are a function of the walking speed, the detection time.

Social Perception Model
- Speed and attention influence the decision to step down from the narrow sidewalk.
- Assumption: speed and attention increase the detection time in the ORCA model. Detection time is then a score.
- Virtual pedestrian decides to step down if his detection time is greater than the other pedestrian involved in the jousting.

N.B.: the virtual pedestrian sees pedestrian in the public space, and detects him in the social space.

Overall ranking of the model-based videos. Median = 4

Discussion
- To use Social Pedestrian Non Player Characters in VR environment is feasible.
- Needs to take into account the empowerment/authority.

First Experiment – Results
- Influence of speed and attention.
 - Pedestrian is expected to step down when:
 - He walks fast.
 - He is attentive.
 - For the participants, no gender effects.

Social Pedestrian Non Player Characters in order to study this kind of situation in virtual environment.

Second Experiment – Results
- Credibility of model-based videos and fake videos according to the subjects’ answers.
- One of 8 videos is a fake video. 8x8 counterbalanced videos.
- Overall ranking of the model-based videos. Median = 4.

Problem:
Why do we choose to step down or stay on the narrow sidewalk when we encounter a pedestrian walking in the opposite way?

Goal:
To simulate a social virtual pedestrian (non player character) in order to study this kind of situation in virtual environment.

To keep a safety zone.

To anticipate the collision.

To avoid the collision by modifying our trajectory.

Collaborative effort (Y/N)

Direction

Speed

We avoid the collision by modifying our trajectory.

First Experiment – Questionnaire
- 64 videos of pre-jousting, before any modification of trajectory.
 - 60 counterbalanced videos.
 - Participants told who was to step down: pedestrian at left or at right in the jousting with a Likert scale.
 - Participants said why the virtual pedestrian stepped down (speed, sex, distraction) with Likert scale.
 - 80 participants.

Second Experiment – Questionnaire
- 36 videos of complete jousting with the new model.
 - 30 counterbalanced videos.
 - One of 8 videos is a fake video.
 - Participants said if the jousting is credible.
 - 80 participants.