Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, Marie-Axelle Granié

To cite this version:
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, et al.. Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality. TRB 2019 - Annual Meeting Transportation Research Board, Jan 2019, Washington DC, United States. hal-02396553

HAL Id: hal-02396553
https://hal-univ-rennes1.archives-ouvertes.fr/hal-02396553
Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PEDESTRIAN COLLISION AVOIDANCE ON NARROW SIDEWALK: A MEETING BETWEEN PSYCHOLOGY AND VIRTUAL REALITY

Context: NARROW SIDEWALKS
- Pedestrians manage social interpersonal distances
- Encountered by two pedestrians is impossible
- One must step down and he is exposed to road traffic
- It can be seen as an URBAN Jousting

Problem:
Why do we choose to step down or remain on the narrow sidewalk when we encounter a pedestrian walking in the opposite way?

Goal:
- To simulate a social virtual pedestrian (non-player character) in order to study this kind of situation in virtual environment

Impact of 3 personal factors were studied:
- Speed (fast – slow)
- Sex (male – female)
- Distraction (texting – non-texting)

Social Perception Model
- Speed and attention influence the decision to step down from the narrow sidewalk

Assumptions:
- Speed and attention increase the detection time in the ORCA model.
- Detection time is then a score
- Virtual pedestrian decides to step down if his detection time is greater than the other pedestrian involved in the jousting

N.B.:
- The virtual pedestrian sees pedestrian in both the public space and detects him in the social space

First Experiment – Results
- 64 videos of pre-jousting, before any modification of trajectory
- 8x8 counterbalanced videos
- Participants told who was to step down: pedestrian at left or right in the jousting with a Likert scale.
- Participants said why the virtual pedestrian stepped down (speed, sex, distraction) with a Likert scale.

Second Experiment – Results
- Speed and attention influence the decision to step down from the narrow sidewalk

Assumptions:
- Speed and attention increase the detection time in the ORCA model.
- Detection time is then a score.
- Virtual pedestrian decides to step down if his detection time is greater than the other pedestrian involved in the jousting

N.B.:
- The virtual pedestrian sees pedestrian in both the public space and detects him in the social space

Discussions:
- To use Social Pedestrian Non-Player Characters in VR environment is feasible
- Needs to take into account the empowerment/authority