J. C. Bünzli, Rising stars in science and technology : Luminescent lanthanide materials, Eur. J. Inorg. Chem, pp.5058-5063, 2017.

K. Binnemans, Lanthanide based luminescent hybrid materials, Chem. Rev, vol.109, pp.4283-4374, 2009.

X. Yi, J. Shang, L. Pan, H. Tan, B. Chen et al., Reversible luminescence modulation upon electric field on a full solid-state device based on lanthanide dimer, ACS Applied Materials & Interfaces, vol.8, pp.15551-15556, 2016.

Y. Cui, J. Zhang, H. He, and G. Qian, Photonic functional metal-organic frameworks, Chem. Soc. Rev, vol.47, pp.5740-5785, 2018.

Y. Cui, B. Li, H. He, W. Zhou, B. Chen et al., Metal-organic frameworks as platforms for functionnal materials, Accounts Chem. Res, vol.49, pp.483-493, 2016.

X. Li, W. Shi, X. Wang, L. Ma, L. Hou et al., Luminescence modulation, white light emission and energy transfer in a family of lanthanide Metal-Organic Frameworks based on a planar ?-conjugated ligand, Cryst. Growth Des, vol.17, pp.4217-4224, 2017.

S. V. Eliseeva and J. C. Bünzli, Lanthanide luminescence for functionnal materials and biosciences, Chem. Soc. Rev, vol.39, pp.189-227, 2010.

J. G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev, vol.111, pp.2729-2755, 2010.

O. Guillou, C. Daiguebonne, G. Calvez, and K. Bernot, A long journey in lanthanide chemistry : from fundamental crystallogenesis studies to commercial anti-counterfeiting taggants, Accounts Chem. Res, vol.49, pp.844-856, 2016.

Y. Wang, X. Tian, H. Zhang, Z. Yang, and X. Yin, Anticounterfeiting quick response code with emission color of invisible Metal?Organic Frameworks as encoding information, ACS Appl. Mater. Interfaces, vol.10, pp.22445-22452, 2018.

J. Andres, R. D. Hersch, J. E. Moser, and A. S. Chauvin, A new counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based Inks, Adv. Func. Mater, vol.24, pp.5029-5036, 2014.

K. Panyarat, S. Thammakan, A. Ngamjarurojana, and A. Rujiwatra, Ratiometric luminescence behavior of lanthanide-mixed benzenedicarboxylate frameworks, Mater. Lett, vol.213, pp.166-169, 2018.

D. Errulat, R. Marin, D. A. Gálico, K. L. Harriman, A. Pialat et al., A Luminescent Thermometer Exhibiting Slow Relaxation of the Magnetization: Toward Self-Monitored Building Blocks for Next-Generation Optomagnetic Devices, ACS Central Science, 2019.

G. Brunet, R. Marin, M. Monks, U. Resch-genger, D. A. Galico et al., Exploring the dual functionality of an ytterbium complex for molecular optical thermometry and slow magnetic relaxation, Chem. Sci, 2019.

X. Rao, T. Song, J. Gao, Y. Cui, Y. Yang et al., A highly sensitive mixed lanthanide metal organic framework self calibrated luminescent thermometer, J. Am. Chem. Soc, vol.135, pp.15559-15564, 2013.

Y. Cui, W. Zou, R. Song, J. Yu, W. Zhang et al., A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer, Chem. Comm, vol.50, pp.719-721, 2014.

M. Ren, D. S. Brites, S. Bao, R. A. Ferreira, L. Zheng et al., A cryogenic luminescent ratiometric thermometer based on lanthanide phosphonate dimer, J. Mater. Chem. C, vol.3, pp.8480-8484, 2015.

I. Badiane, S. Freslon, Y. Suffren, C. Daiguebonne, G. Calvez et al., High britness and easy color modulation in lanthanide-based coordination polymers with 5-methoxyisophthalate as ligand: Toward emission colors additive strategy, Cryst. Growth Des, vol.17, pp.1224-1234, 2017.

X. Fan, S. Freslon, C. Daiguebonne, L. Le-polles, G. Calvez et al., A family of lanthanide based coordination polymers with boronic acid as ligand, Inorg. Chem, vol.54, pp.5534-5546, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153399

S. Freslon, Y. Luo, G. Calvez, C. Daiguebonne, O. Guillou et al., Influence of photo-induced electron transfer on lanthanide-based coordination polymers luminescence : A comparison between two pseudo-isoreticular molecular networks, Inorg. Chem, vol.53, pp.1217-1228, 2014.

A. Cadiau, D. S. Brites, P. M. Costa, R. A. Ferreira, J. Rocha et al., Ratiometric nanothermometer based on an emissive Ln 3+ organic framework, ACS Nano, vol.7, pp.7213-7218, 2013.

Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu et al., A Luminescent mixed-lanthanide Metal-Organic Framework thermometer, J. Am. Chem. Soc, vol.134, pp.3979-3982, 2012.

X. Fan, S. Freslon, C. Daiguebonne, G. Calvez, L. Le-polles et al., Heteronuclear lanthanide-based coordination polymers exhibiting tunable multiple emission spectra, J. Mater. Chem. C, pp.5510-5525, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016002

Y. Luo, Y. Zheng, G. Calvez, S. Freslon, K. Bernot et al., Synthesis, crystal structure and luminescent properties of new lanthanide-containing coordination polymers Involving 4,4'-oxy-bis-benzoate as Ligand, Cryst. Eng. Comm, vol.15, pp.706-720, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00771341

X. Zhou, H. Wang, S. Jiang, G. Xiang, X. Tang et al., Multifunctional luminescent material Eu(III) and Tb(III) complexes with pyridine-3,5-dicarboxylic acid linker; Crystal structures, tunable emission, Energy transfer and temperature sensing, Inorg. Chem, vol.58, pp.3780-3788, 2019.

D. Zhao, D. Yue, K. Jiang, L. Zhang, C. Li et al., Isostructural Tb 3+ /Eu 3+ co-doped Metal-Oragnic Framework based on pyridine-containing dicarboxylate ligands for ratiometric luminescence temperature sensing, Inorg. Chem, vol.58, pp.2637-2644, 2019.

Z. Zheng, Ligand-controlled self-assembly of polynuclear lanthanide-oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design, Chem. Comm, pp.2521-2529, 2001.

R. Wang, H. D. Selby, H. Liu, M. D. Carducci, T. Jin et al., Halide-templated assembly of polynuclear lanthanide-hydroxo complexes, Inorg. Chem, vol.41, pp.278-286, 2002.

V. Guillerm, L. Weselinski, Y. Belmabkhout, A. J. Cairns, V. ;-d'elia et al., Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks, Nat. Chem, vol.6, pp.673-680, 2014.

R. Luebke, Y. Belmabkhout, L. Weselinski, A. J. Cairns, M. Alkordi et al., Versatile rare earth hexanuclear clusters for the design and synthesis of highly connected ftw-MOFs, Chem. Sci, vol.6, pp.4095-4102, 2015.

D. Xue, Y. Belmabkhout, O. Shekhah, H. Jiang, K. Adil et al., Tunable rare earth fcu-MOF platform : Access to adsorption kinetics driven gas/vapor separations via pore siez contraction, J. Am. Chem. Soc, vol.137, pp.5034-5040, 2015.

G. Calvez, F. Le-natur, C. Daiguebonne, K. Bernot, Y. Suffren et al., Lanthanide-based hexanuclear complexes and their use as molecular precursors, Coord. Chem. Rev, vol.340, pp.134-153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01419228

D. Alezi, A. M. Peedikakkal, L. Weselinski, V. Guillerm, Y. Belmabkhout et al., Quest for highly connected metal-organic framework platforms : rara earth polynuclear clusters versatility meets net topology needs, J. Am. Chem. Soc, vol.137, pp.5421-5430, 2015.

Z. Zheng, Cluster compounds of rare-earth elements, Hanbook on the Physics and Chemistry of Rare Earths, vol.40, pp.109-239, 2010.

D. Grebenyuk, I. Martynova, and D. Tsymbarenko, Self-assembly of hexanuclear lanthanide carboxylate clusters of three architectures, Eur. J. Inorg. Chem, pp.3103-311, 2019.

N. Mahé, O. Guillou, C. Daiguebonne, Y. Gérault, A. Caneschi et al., Polynuclear lanthanide hydroxo complexes : new chemical precursors for coordination polymers, Inorg. Chem, vol.44, pp.7743-7750, 2005.

G. Calvez, O. Guillou, C. Daiguebonne, P. Car, V. Guillerm et al., Octaedral hexanuclear complexes involving light lanthanide Ions, Inorg. Chim. Acta, vol.361, pp.2349-2356, 2008.

G. Giester, P. Unfried, and Z. Zak, Syntheses and crystal structures of some new rare earth basic nitrates II : [Ln 6 O(OH) 8 (H 2 O) 12 (NO 3 ) 6 ](NO 3 ) 2 .xH 2 O, Ln=Sm, Dy, Er ; x(Sm)=6, x(Dy)=5, x(Er)=4, J. Alloys Compd, vol.257, pp.175-181, 1997.

Z. Zak, P. Unfried, and G. Giester, The structures of some rare earth basic nitrates [Ln 6 (µ 6 -O)(µ 3 -OH) 8 (H 2 O) 12 (NO 3 ) 6 ](NO 3 ) 2 .xH 2 O, Ln=Y, Gd, Yb ; x(Y, Yb)=4, x(Gd)=5. A novel rare earth metal cluster of the M 6 X 8 type with interstitial O atom, J. Alloys Compd, vol.205, pp.235-242, 1994.

P. Unfried, Isolation and characterization of four intermediates hydrates by isothermal dehydration of Y(OH) x (NO 3 ) 3-x .yH 2 O, Thermochim. Acta, vol.303, pp.119-127, 1997.

G. Giester, Z. Zak, and P. Unfried, Syntheses and crystal structures of rare earth basic nitrates hydrates, J. Alloys Compd, vol.481, pp.116-128, 2009.

G. Calvez, C. Daiguebonne, O. Guillou, T. Pott, P. Méléard et al., Lanthanide-based hexanuclear complexes usable as molecular precursor for new hybrid materials : state of the art, C. R. Chimie, vol.13, pp.715-730, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525072

L. Natur, F. Calvez, G. Guéguan, J. P. Le-polles, L. Trivelli et al., Characterization and luminescence properties of lanthanide based polynuclear complexes nanoaggregates, Inorg. Chem, vol.54, pp.6043-6054, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162339

G. Calvez, C. Daiguebonne, and O. Guillou, Unprecedented lanthanide containing coordination polymers constructed from hexanuclear molecular building blocks: {[Ln 6 O(OH) 8 ](NO 3 ) 2 (bdc)(Hbdc) 2 ,2NO 3 ,H 2 bdc} n, Inorg. Chem, vol.50, pp.2851-2858, 2011.

H. Yao, G. Calvez, C. Daiguebonne, K. Bernot, Y. Suffren et al., Hexalanthanide complexes as molecular precursors: synthesis, crystal structure and luminescent and magnetic properties, Inorg. Chem, vol.56, pp.14632-14642, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657831

A. Abdallah, S. Freslon, X. Fan, A. Rojo, C. Daiguebonne et al., Lanthanide based coordination polymers with 1,4 carboxyphenylboronic ligand: multi emissive compounds for multi sensitive luminescent thermometric probes, Inorg. Chem, vol.58, pp.462-475, 2019.

L. Natur, F. Calvez, G. Daiguebonne, C. Guillou, O. Bernot et al., Coordination polymers based on hexanuclear rare earth complexes : Toward independant luminescence brightness and color emission, Inorg. Chem, vol.52, pp.6720-6730, 2013.

A. Altomare, M. C. Burla, M. Camalli, B. Carrozzini, G. Cascarano et al., EXPO: a program for full powder pattern decomposition and crystal structure solution, J. Appl. Crystallogr, vol.32, pp.339-340, 1999.

G. M. Sheldrick and T. R. Schneider, SHELXL : High-Resolution Refinement, Macromol. Crystallogr. B, pp.319-343, 1997.

L. J. Farrugia, WinGX suite for smallmolecule single-crystal crystallography, J. Appl. Crystallogr, vol.32, pp.837-838, 1999.

P. Sluis and A. L. Spek, BYPASS: an Effective method for the refinement of crystal structures containing disordered solvent regions, Acta Crystallogr. A, vol.46, pp.194-201, 1990.

A. S. Chauvin, F. Gumy, D. Imbert, and J. C. Bünzli, Europium and terbium tris(dipicolinate) as secondary standards for quantum yield determination, Spectrosc Lett, vol.37, pp.512-532, 2004.

D. Sendor, M. Hilder, T. Juestel, P. C. Junk, and U. Kynast, One dimensional energy transfer in lanthanoid picolinates. Correlation of structure and spectroscopy, CIE, International Commission on Illumination -Technical report. CIE, vol.27, p.16, 1995.

G. Wyszecki and . Colorimetry, Handbook of Optics, pp.1-15, 1978.

O. Guillou, C. Daiguebonne, G. Calvez, F. Le-dret, and P. E. Car, Structuring effect of [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ entities, J. Alloys Compd, vol.451, pp.329-333, 2008.

G. Calvez, K. Bernot, O. Guillou, C. Daiguebonne, A. Caneschi et al., Sterically-induced synthesis of 3d-4f one-dimensional compounds: a new route towards 3d-4f Single Chain Magnets, Inorg. Chim. Acta, vol.361, pp.3997-4003, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00525223

D. Casanova, M. Llunell, P. Alemany, and S. Alvarez, The rich stereochemistry of eight-vertex polyhedra: A continuous shape measures study, Chem. -Eur. J, vol.11, pp.1479-1494, 2005.

S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell et al., Shape maps and polyhedral interconversion paths in transition metal chemistry, Coord. Chem. Rev, vol.249, pp.1693-1708, 2005.

M. Fourmigué, Halogen bonding: Recent advances, Current Opin. Solid St. M, pp.36-45, 2009.

J. C. Bünzli and S. V. Eliseeva, Basics of lanthanide photophysics, vol.7, pp.1-45, 2010.

C. Piguet, J. C. Bünzli, G. Bernardinelli, G. Hopfgatner, and A. F. Williams, Self-assembly and photophysical properties of lanthanide dinuclear triple-helical complexes, J. Am. Chem. Soc, vol.115, pp.8197-8206, 1993.

D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys, vol.21, pp.836-850, 1953.

T. Förster, Comparative effects of radiation, 1960.

S. I. Weissman, Intramolecular energy transfer -The fluorescence of complexes of europium

, Chem Phys, vol.10, pp.214-217, 1942.

W. T. Carnall, P. R. Fields, and K. Rajnak, Energy levels in the trivalent lanthanide ions. III. Tb 3+, J. Chem. Phys, vol.49, pp.4447-4450, 1968.

W. T. Carnall, P. R. Fields, and K. Rajnak, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ and Ho 3+, J. Chem. Phys, vol.49, pp.4412-4423, 1968.

W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic energy levels of the trivalent lanthanide ions. IV. Eu 3+, J. Chem. Phys, vol.49, pp.4450-4455, 1968.

V. Haquin, M. Etienne, C. Daiguebonne, S. Freslon, G. Calvez et al., Color and brightness tuning in heteronuclear lanthanide teraphthalate coordination polymers, Eur. J. Inorg. Chem, pp.3464-3476, 2013.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriguez-ubis et al., Correlation between the lowest triplet state energy level of the ligand and lanthanide luminescence quantum yields, J. Lumin, vol.75, pp.149-169, 1997.

A. D'aléo, F. Pointillart, L. Ouahab, C. Andraud, and O. Maury, Charge transfer excited states sensitization of lanthanide emitting from the visible to near infra red, Coord. Chem. Rev, vol.256, pp.1604-1620, 2012.

M. L. Bhaumik and L. J. Nugent, Time-Resolved Spectroscopy of Europium Chelates, J. Chem. Phys, vol.43, pp.1680-1687, 1965.

W. R. Dawson, J. L. Kropp, and M. W. Windsor, Internal-Energy-Transfer Efficiencies in Eu 3+ and Tb 3+ Chelates Using Excitation to Selected Ion Levels, J. Chem. Phys, vol.45, pp.2410-2418, 1966.

A. Beeby, L. M. Bushby, D. Maffeo, and J. A. William, The efficient intramolecular sensitisation of terbium(III) and europium(III) by benzophenone-containing ligands, Journal of the Chemical Society Perkin Transactions, vol.2, pp.1281-1283, 2000.

L. Prodi, M. Maestri, R. Ziessel, and V. Balzani, Luminescent Eu 3+ , Tb 3+ and Gd 3+ complexes of a branched triazacyclononane ligand containing three 2,2'bipyridine units, Inorg. Chem, vol.30, pp.3798-3802, 1991.

C. Galaup, J. Couchet, S. Bedel, P. Tisnès, and C. Picard, Direct access to terpyridinecontaining polyazamacrocycles as photosensitizing ligands for Eu(III) luminescence in aqueous media, J. Org. Chem, vol.70, pp.2274-2284, 2005.

M. D. Ward, Transition metal sensitized near infrared luminescence from lanthanide in d-f heteronuclear arrays, Coord. Chem. Rev, vol.251, pp.1663-1677, 2007.

D. T. Clark, J. N. Murrell, and J. M. Tedder, The magnitudes and signs of the inductive and mesomeric effects of the halogens, Journal of the Chemical Society, pp.1250-1253, 1963.

F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. Van-der-tol, and J. W. Verhoeven, New sensitizer-modified calix[4]arenes enabling Near-UV Excitation of complexed luminescent lanthanide ions, J. Am. Chem. Soc, vol.117, pp.9408-9414, 1995.

M. O. Rodrigues, J. D. Dutra, L. A. Nunes, G. F. De-sa, W. M. De-azevedo et al., Tb 3+ ->Eu 3+ energy transfer in mixed lanthanide organic frameworks, J. Phys. Chem. C, vol.116, pp.19951-19957, 2012.

P. R. Selvin, T. M. Rana, and J. E. Hearst, Luminescence resonance energy transfer, J. Am. Chem. Soc, vol.116, pp.6029-6030, 1994.

J. Rocha, D. S. Brites, and L. D. Carlos, Lanthanide organic framework luminescent thermometers, Chem. -Eur. J, vol.22, pp.14782-14795, 2016.

A. Cadiau, D. S. Brites, P. M. Costa, R. A. Ferreira, J. Rocha et al., Ratiometric nanomether based on an emissive Ln 3+ -organic framework, ACS Nano, vol.7, pp.7213-7218, 2013.

D. S. Brites, P. P. Lima, N. J. Silva, A. Millan, V. S. Amaral et al., Lanthanide-based luminescent molecular thermometers, New J. Chem, vol.35, pp.1177-1183, 2011.

Y. Cui, R. Sog, J. Yu, M. Liu, Z. Wang et al., Dual emitting MOF-Dye composite for ratiometric temperature sensing, Adv. Mater, vol.27, pp.1420-1425, 2015.

T. Chuasaard, A. Ngamjarurojana, S. Surinwong, T. Konno, S. Bureekaew et al., Lanthanide coordination polymers of mixed phthalate/adipate for ratiometric temperature sensing in the upper-intermediate temperature range, Inorg. Chem, vol.57, pp.2620-2630, 2018.

D. S. Brites, A. Millan, and L. D. Carlos, Lanthanides in Luminescent Thermometry, Handbook on the Physics and Chemistry of Rare Earths, 2016.