R. Honegger, Simon Schwendener (1829-1919) and the dual hypothesis of lichens, Bryologist, vol.103, pp.307-313, 2000.

O. Perru, A. Colin, and O. Perru, Aux origines des recherches sur la symbiose vers 1868-1883, Rev. Hist. Sci. Paris, vol.59, pp.5-27, 2006.

S. Y. Shibata and . Asahina, 1880-1975) and his studies on lichenology and chemistry of lichen metabolites, Bryologist, vol.103, pp.710-719, 2000.

Y. Asahina, Fortschritte Der Chemie Organischer Naturstoffe, pp.208-239, 1951.

Y. Asahina and S. Shibata, Chemistry Of Lichen Substances, 1954.

C. F. Culberson and H. Kristinsson, A standardized method for the identification of lichen products, J. Chromatogr, vol.46, pp.85-93, 1970.

C. F. Culberson and W. L. Culberson, Chemosyndromic variation in lichens, Syst. Bot, vol.1, pp.325-339, 1976.

C. F. Culberson and W. L. Culberson, Cetrelia cetrarioides and C. monachorum (Parmeliaceae) in the, New World. Bryologist, vol.81, pp.517-523, 1978.

C. F. Culberson, W. L. Culberson, and T. L. Esslinger, Chemosyndromic variation in the Parmelia pulla group, Bryologist, vol.80, pp.125-135, 1977.

E. Stocker-wörgötter, Secondary chemistry of lichen-forming fungi: chemosyndromic variation and DNA-analyses of cultures and chemotypes in the Ramalina farinacea complex, Bryologist, vol.107, pp.152-162, 2004.

S. Lagreca, A phylogenetic evaluation of the Ramalina americana chemotype complex (Lichenized Ascomycota, Ramalinaceae) based on rDNA ITS sequence data, Bryologist, vol.102, pp.602-618, 1999.

J. A. Elix and C. E. Crook, The joint occurrence of chloroxanthones in lichens, and a further thirteen new lichen xanthones, Bryologist, vol.95, pp.52-64, 1992.

J. A. Elix and K. L. Gaul, The interconversion of the lichen depsides para-and meta-scrobiculin, and the biosynthetic implications, Aust. J. Chem, vol.39, pp.613-624, 1986.

J. A. Elix, U. A. Jenie, and J. L. Parker, A novel synthesis of the lichen depsidones divaronic acid and stenosporonic acid, and the biosynthetic implications, Aust. J. Chem, vol.40, pp.1451-1464, 1987.

M. E. Hale, Chemical strains of the lichen Parmelia furfuracea, Am. J. Bot, vol.43, pp.456-459, 1956.

M. E. Hale, Fluorescence of lichen depsides and depsidones as a taxonomic criterion, Castanea, vol.21, pp.30-32, 1956.

W. L. Culberson, The use of chemistry in the systematics of the lichens, Taxon, vol.18, pp.152-166, 1969.

I. M. Brodo, Interpreting chemical variation in lichens for systematic purposes, Bryologist, vol.89, pp.132-138, 1986.

H. T. Lumbsch, Chemical Fungal Taxonomy, pp.345-387, 1998.

H. T. Lumbsch, Protocols In Lichenology: Culturing, Biochemistry, Ecophysiology And Use In Biomonitoring, pp.281-295, 2002.

I. Schmitt and H. T. Lumbsch, Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes, Mol. Phylogenet. Evol, vol.33, pp.43-55, 2004.

A. Crespo, Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence, Taxon, vol.59, pp.1735-1753, 2010.

H. T. Lumbsch, High frequency of character transformations is phylogenetically structured within the lichenized fungal family Graphidaceae, Ascomycota: Ostropales). Syst. Biodivers, vol.12, pp.271-291, 2014.

S. Huneck and I. Yoshimura, Identification Of Lichen Substances, 1996.

L. Pogam and P. , Matrix-free UV-laser desorption ionization mass spectrometry as a versatile approach for accelerating dereplication studies on lichens, Anal. Chem, vol.87, pp.10421-10428, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216287

K. Huovinen, R. Hiltunen, and M. Von-schantz, A standardized HPLC method for analyses of lichen compounds from the genus. Cladonia, Planta Med, vol.45, pp.152-152, 1982.

I. Yoshimura, Y. Kinoshita, Y. Yamamoto, S. Huneck, and Y. Yamada, Analysis of secondary metabolites from lichen by high performance liquid chromatography with a photodiode array detector, Phytochem. Anal, vol.5, pp.197-205, 1994.

L. Pogam, P. Le-lamer, A. Legouin, B. Boustie, J. Rondeau et al., In situ DART-MS as a versatile and rapid dereplication tool in lichenology: chemical fingerprinting of Ophioparma ventosa, Phytochem. Anal, vol.27, pp.354-363, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397917

L. Corvec and M. , Chemotaxonomic discrimination of lichen species using an infrared chalcogenide fibre optic sensor: a useful tool for on-field biosourcing, RSC Adv, vol.6, pp.108187-108195, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416443

M. Varol, Studies In Natural Products Chemistry, vol.60, p.12, 2018.

L. Pogam, P. Herbette, G. Boustie, and J. , Recent Advances In Lichenology, vol.1, p.11, 2015.

L. Myllys, H. Lindgren, S. Aikio, L. Häkkinen, and F. Högnabba, Chemical diversity and ecology of the genus Bryoria section Implexae (Parmeliaceae) in Finland, Bryologist, vol.119, pp.29-38, 2016.

A. Gerlach, C. L. Da, P. Clerc, and R. M. Borges-da-silveira, Taxonomy of the corticolous, shrubby, esorediate, neotropical species of Usnea Adans. (Parmeliaceae) with an emphasis on southern Brazil, Lichenol, vol.49, pp.199-238, 2017.

B. N. Jha, Investigation of antioxidant, antimicrobial and toxicity activities of lichens from high altitude regions of Nepal, BMC Complement. Altern. Med, vol.17, p.282, 2017.

S. Ekman and T. Tønsberg, Biatora alnetorum (Ramalinaceae, Lecanorales), a new lichen species from western North America, MycoKeys, vol.48, pp.55-65, 2019.

K. Kalb and A. Aptroot, New lichen species from Brazil and Venezuela, Bryologist, vol.121, pp.56-66, 2018.

J. Kalb, R. Lücking, and K. Kalb, The lichen genera Allographa and Graphis (Ascomycota: Ostropales, Graphidaceae) in Thailandeleven new species, forty-seven new records and a key to all one hundred and fifteen species so far recorded for the country, Phytotaxa, vol.377, pp.1-83, 2018.

A. Aptroot and M. E. Da-silva-caceres, New lichen species from Chapada Diamantina, Bryologist, vol.121, pp.67-79, 2018.

S. Huneck, New Results On The Chemistry Of Lichen Substances, 2001.

J. Elix, A Catalogue Of Standardized Chromatographic Data And Biosynthetic Relationships For Lichen Substances, 2014.

L. Pogam, P. Boustie, and J. , Xanthones of lichen source: a 2016 update, Molecules, vol.21, p.30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01290422

F. Schumm and J. A. Elix, Atlas Of Images Of Thin Layer Chromatograms Of Lichen Substances, 2015.

G. Rambold, Geographic heat maps of lichen traits derived by combining LIAS light description and GBIF occurrence data, Biodivers. Conserv, vol.25, pp.2743-2751, 2016.

G. Rambold, LIAS light -towards the ten thousand species milestone, MycoKeys, vol.8, pp.11-16, 2014.

E. Mietzsch, H. T. Lumbsch, and J. A. Elix, A new computer program for the identification on lichen substances, Mycotaxon, vol.47, pp.475-479, 1993.

P. D. Crittenden and N. Porter, Lichen-forming fungi: potential sources of novel metabolites, Trends Biotechnol, vol.9, pp.409-414, 1991.

M. Grube, Lichens -a promising source of bioactive secondary metabolites, Plant Genet. Resour, vol.3, pp.273-287, 2019.

K. Molnár and E. Farkas, Current results on biological activities of lichen secondary metabolites: a review, Zeitschrift für Naturforsch. C, vol.65, pp.157-173, 2010.

M. Goga, , pp.1-36, 2018.

A. Schinkovitz, Secondary metabolites from lichen as potent inhibitors of advanced glycation end products and vasodilative agents, Fitoterapia, vol.131, pp.182-188, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01903310

J. Boustie, S. Tomasi, and M. Grube, Bioactive lichen metabolites: alpine habitats as an untapped source, Phytochem. Rev, vol.10, pp.287-307, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00843547

S. Huneck, The significance of lichens and their metabolites, Naturwissenschaften, vol.86, pp.559-570, 1999.

E. Stocker-wörgötter, Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes, Nat. Prod. Rep, vol.25, pp.188-200, 2008.

T. Duong, Sanctis A -C: three racemic procyanidin analogues from the lichen Parmotrema sancti-angelii, European J. Org. Chem, pp.2247-2253, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01809151

T. Duong, Tsavoenones A-C: unprecedented polyketides with a 1, vol.16, pp.5913-5919, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875216

A. E. Fox-ramos, Collected mass spectrometry data on monoterpene indole alkaloids from natural product chemistry research, Sci. Data, vol.6, pp.1-6, 2019.

M. Wang, Perspective sharing and community curation of mass spectrometry data with global natural products social molecular networking, Nat. Biotechnol, vol.34, pp.828-837, 2016.

K. Haug, MetaboLights -an open-access general-purpose repository for metabolomics studies and associated meta-data, Nucleic Acids Res, vol.41, pp.781-786, 2013.

D. Olivier-jimenez, A database of high-resolution MS/MS spectra for lichen metabolites, p.999, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02397308

R. Adusumilli and P. Mallick, Proteomics: Methods and Protocols, vol.23, 2017.

M. C. Chambers, A cross-platform toolkit for mass spectrometry and proteomics, Nat. Biotechnol, vol.30, pp.918-920, 2012.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, vol.24, pp.2534-2536, 2008.

R. Development-core and . Team, R: a language and environment for statistical computing, 2008.

L. Gatto and K. S. Lilley, MSnbase-an R/bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation, Bioinformatics, vol.28, pp.288-289, 2012.

M. Mann, Electrospray: its potential and limitations as an ionization method for biomolecules, Org. Mass Spectrom, vol.25, pp.575-587, 1990.

L. Rafaëlly, S. Héron, W. Nowik, and A. Tchapla, Optimisation of ESI-MS detection for the HPLC of anthraquinone dyes, Dye. Pigment, vol.77, pp.191-203, 2008.

,

M. Holcapek, K. Volna, and D. Vanerkova, Effects of functional groups on the fragmentation of dyes in electrospray and atmospheric pressure chemical ionization mass spectra, Dye. Pigment, vol.75, pp.156-165, 2007.

T. Pluskal, S. Castillo, A. Villar-briones, and M. Ore?i?, MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data, BMC Bioinformatics, vol.11, p.11, 2010.

E. L. Schymanski, Identifying small molecules via high resolution mass spectrometry: communicating confidence, Environ. Sci. Technol, vol.48, pp.2097-2098, 2014.

S. Böcker, M. C. Letzel, Z. Lipták, and A. Pervukhin, SIRIUS: decomposing isotope patterns for metabolite identification, Bioinformatics, vol.25, pp.218-224, 2009.

G. Holzmann and C. Leuckert, Applications of negative fast atom bombardment and MS/MS to screening of lichen compounds, Phytochemistry, vol.29, pp.2277-2283, 1990.

L. Pogam and P. , Minor pyranonaphthoquinones from the apothecia of the lichen Ophioparma ventosa, J. Nat. Prod, vol.79, pp.1005-1011, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01286283

H. Skult, Notes on the chemical and morphological variation of the lichen Ophioparma ventosa in East Fennoscandia, Ann. Bot. Fenn, vol.34, pp.291-297, 1997.

P. F. May, Ophioparma lapponica-a misunderstood species, Harvard Pap. Bot, vol.2, pp.213-228, 1997.

D. Joulain and R. Tabacchi, Lichen extracts as raw materials in perfumery. Part 1: oakmoss. Flavour Fragr, J, vol.24, pp.49-61, 2009.

C. F. Culberson, The lichen substances of the genus Evernia, Phytochemistry, vol.2, pp.335-340, 1963.

M. Kosani?, N. Manojlovi?, S. Jankovi?, T. Stanojkovi?, and B. Rankovi?, Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents, Food Chem. Toxicol, vol.53, pp.112-118, 2013.

K. Molnár and E. Farkas, Depsides and depsidones in populations of the lichen Hypogymnia physodes and its genetic diversity, Ann. Bot. Fenn, vol.48, pp.473-482, 2011.

E. Latkowska, Phytochemistry secondary metabolites of the lichen Hypogymnia physodes (L.) Nyl. and their presence in spruce (Picea abies (L.) H. Karst.) bark, Phytochemistry, vol.118, pp.116-123, 2015.

D. Bia?o?ska and F. E. Dayan, Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region, J. Chem. Ecol, vol.31, p.2005, 2005.

K. A. Solhaug, M. Lind, L. Nybakken, and Y. Gauslaa, Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes, Flora, vol.204, pp.40-48, 2009.

B. Rankovi?, M. Kosani?, N. Manojlovi?, A. Ran?i?, and T. Stanojkovi?, Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites, Med. Chem. Res, vol.23, pp.408-416, 2014.

D. Cansaran-duman, D. Cetin, H. Sismek, and N. Coplu, Antimicrobial activities of the lichens Hypogymnia vittata, Hypogymnia physodes and Hypogymnia tubulosa and HPLC analysis of their usnic acid content, Asian J. Chem, vol.22, pp.6125-6132, 2010.

A. Avalos and C. Vicente, The occurrence of lichen phenolics in the photobiont cells of Evernia prunastri, Plant Cell Rep, vol.6, pp.74-76, 1987.

C. Vicente and E. Pérez-urria, Tolbutamide, a urea derivative, impedes phenolic accumulation in the lichen Evernia prunastri, J. Plant Physiol, vol.132, pp.580-583, 1988.

P. Herrero-yudego, M. Martin-pedrosa, J. Norato, and C. Vicente, Some features about usnic acid accumulation and its movement between the symbionts of the lichen, Evernia prunastri, J. Plant Physiol, vol.135, pp.170-174, 1989.

D. Díaz-guerra and E. Manrique, Sustancias liquénicas en taxones de la provincia de Madrid I. Evernia prunastri (L.) Acb. y Parmelina tiliacea (Hoffm, Hale. Lazaroa, vol.6, pp.267-268, 1984.

M. E. Legaz, Annual variations in arginine metabolism and phenolic content of Evernia prunastri, Environ. Exp. Bot, vol.26, pp.385-396, 1986.

J. W. Bjerke, K. Lerfall, and A. Elvebakk, Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens, Photochem. Photobiol. Sci, vol.1, pp.678-685, 2002.