O. Frédéric and P. Yves, Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent, Chemosphere, vol.115, pp.31-39, 2014.

A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, The occurrence of antibiotics in an urban watershed: From wastewater to drinking water, Sci. Total Environ, vol.407, pp.2711-2723, 2009.

S. Rodriguez-mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros et al.,

D. Borrego, J. L. Barceló, and . Balcázar, Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river, Water Res, vol.69, pp.234-242, 2015.

F. Tamtam, F. Van-oort, B. L. Bot, T. Dinh, S. Mompelat et al.,

. Thiry, Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation, Sci. Total Environ, vol.409, pp.540-547, 2011.

F. Tamtam, F. Mercier, B. L. Bot, J. Eurin, Q. Dinh et al., Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, Sci. Total Environ, vol.393, pp.84-95, 2008.

S. Castiglioni, F. Pomati, K. Miller, B. P. Burns, E. Zuccato et al., Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments, Water Res, vol.42, pp.4271-4280, 2008.

L. Kovalova, H. Siegrist, H. Singer, A. Wittmer, and C. S. Mcardell, Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination, Environ. Sci. Technol, vol.46, pp.1536-1545, 2012.

I. Michael, L. Rizzo, C. S. Mcardell, C. M. Manaia, C. Merlin et al., Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res, vol.47, pp.957-995, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01507503

A. R. Lado-ribeiro, N. F. Moreira, G. Li-puma, and A. M. Silva, Impact of water matrix on the removal of micropollutants by advanced oxidation technologies, Chem. Eng. J, vol.363, pp.155-173, 2019.

. B. 11d, C. Miklos, M. Remy, K. G. Jekel, J. E. Linden et al., Evaluation of advanced oxidation processes for water and wastewater treatment -A critical review, Water Res, vol.139, pp.118-131, 2018.

S. Wac?awek, V. V. Padil, and M. ?erník, Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review, Ecol. Chem. Eng. S, vol.25, pp.9-34, 2018.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ, vol.125, pp.331-349, 2012.

M. N. Chong, B. Jin, C. W. Chow, and C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res, vol.44, pp.2997-3027, 2010.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res, vol.88, pp.428-448, 2016.

N. Daneshvar, D. Salari, and A. ,

. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. Chem, vol.162, pp.317-322, 2004.

S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy et al.,

. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, vol.77, pp.65-82, 2003.

C. Gomez-solís, J. C. Ballesteros, L. M. Torres-martínez, I. Juárez-ramírez, L. A. Torres et al., Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange, J. Photochem. Photobiol. Chem, vol.298, pp.49-54, 2015.

F. Sordello, I. Berruti, C. Gionco, M. C. Paganini, P. Calza et al., Photocatalytic performances of rare earth element-doped zinc oxide toward pollutant abatement in water and wastewater, Appl. Catal. B Environ, vol.245, pp.159-166, 2019.

M. C. Paganini, A. Giorgini, N. P. Gonçalves, C. Gionco, A. Prevot et al., MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis, Appl. Catal. B Environ, vol.189, pp.181-191, 2016.

A. Rajeswari, S. Vismaiya, and A. Pius, Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water, Chem. Eng. J, vol.313, pp.928-937, 2017.

P. S. Chauhan, R. Kant, A. Rai, A. Gupta, and S. Bhattacharya, Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation, Mater. Sci. Semicond. Process, vol.89, pp.6-17, 2019.

L. Valenzuela, A. Iglesias, M. Faraldos, A. Bahamonde, and R. , Antimicrobial surfaces with self-cleaning properties functionalized by photocatalytic ZnO electrosprayed coatings, J. Hazard. Mater, vol.369, pp.665-673, 2019.

T. Jia, W. Wang, F. Long, Z. Fu, H. Wang et al., Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires, J. Alloys Compd, vol.484, pp.410-415, 2009.

H. Zhao, S. Chen, X. Quan, H. Yu, and H. Zhao, Integration of microfiltration and visiblelight-driven photocatalysis on g-C 3 N 4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Appl. Catal. B Environ, vol.194, pp.134-140, 2016.

S. Babi?, M. Peri?a, and I. ?kori?, Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media, Chemosphere, vol.91, pp.1635-1642, 2013.

S. Sriwichai, H. Ranwongsa, K. Wetchakun, S. Phanichphant, and N. Wetchakun, Effect of iron loading on the photocatalytic performance of Bi2WO6 photocatalyst, Superlattices Microstruct, vol.76, pp.362-375, 2014.

M. M. Ba-abbad, A. A. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol-gel technique, Chemosphere, vol.91, pp.1604-1611, 2013.

V. C. Priyanka and . Srivastava, Photocatalytic Oxidation of Dye Bearing Wastewater by Iron Doped Zinc Oxide, Ind. Eng. Chem. Res, vol.52, pp.17790-17799, 2013.

. 33p, R. E. Neta, A. B. Huie, and . Ross, Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, J. Phys. Chem. Ref. Data, vol.17, pp.1027-1284, 1988.

M. Anbar and P. Neta, A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution, Int. J. Appl. Radiat. Isot, vol.18, pp.493-523, 1967.

Y. Wu, A. Bianco, M. Brigante, W. Dong, P. De-sainte-claire et al., Sulfate Radical Photogeneration Using Fe-EDDS: Influence of Critical Parameters and Naturally Occurring Scavengers, Environ. Sci. Technol, vol.49, pp.14343-14349, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01264558

E. M. Rodríguez, G. Márquez, M. Tena, P. M. Álvarez, and F. J. Beltrán, Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin, Appl. Catal. B Environ, vol.178, pp.44-53, 2015.

M. Kamagate, A. Amin-assadi, T. Kone, L. Coulibaly, and K. Hanna, Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems, J. Hazard. Mater, vol.346, pp.159-166, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695559

S. T. Martin, A. T. Lee, and M. R. Hoffmann, Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons, Environ. Sci. Technol, vol.29, pp.2567-2573, 1995.

L. Xu and J. Wang, Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol, Environ. Sci. Technol, vol.46, pp.10145-10153, 2012.

M. Mahdi-ahmed and S. Chiron, Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater, J. Hazard. Mater, vol.265, pp.41-46, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02046580

C. Jiang, Y. Ji, Y. Shi, J. Chen, and T. Cai, Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices, Water Res, vol.106, pp.507-517, 2016.

H. Guo, T. Ke, N. Gao, Y. Liu, and X. Cheng, Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation, Chem. Eng. J, vol.316, pp.471-480, 2017.

. 43h, J. Gao, Y. Chen, X. Zhang, and . Zhou, Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system, Chem. Eng. J, vol.306, pp.522-530, 2016.

, Oxidation Processes (AOPs), vol.48, pp.2344-2351, 2014.

S. Khan, X. He, J. A. Khan, H. M. Khan, D. L. Boccelli et al., Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system, Chem. Eng. J, vol.318, pp.135-142, 2017.

A. A. Dougna, B. Gombert, T. Kodom, G. Djaneye-boundjou, S. O. Boukari et al., Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: Effect of inorganic oxidants, J. Photochem. Photobiol. Chem, vol.305, pp.67-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01332891

K. Yang, D. Lin, and B. Xing, Interactions of Humic Acid with Nanosized Inorganic Oxides, Langmuir, vol.25, pp.3571-3576, 2009.

. 48h, M. Kerndorff, and . Schnitzer, Sorption of metals on humic acid, Geochim. Cosmochim. Acta, vol.44, pp.1701-1708, 1980.

S. Jayalath, H. Wu, S. C. Larsen, and V. H. Grassian, Surface Adsorption of Suwannee River Humic Acid on TiO 2 Nanoparticles: A Study of pH and Particle Size, vol.34, pp.3136-3145, 2018.

M. Drosos, M. Ren, and F. H. Frimmel, The effect of NOM to TiO 2 : interactions and photocatalytic behavior, Appl. Catal. B Environ, vol.165, pp.328-334, 2015.