Y. Xu, Q. Ren, Z. Zheng, and Y. He, Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media, Appl. Energy, vol.193, pp.84-95, 2017.

A. De-gracia and L. F. Cabeza, Phase change materials and thermal energy storage for buildings. Energy Build, vol.103, pp.414-419, 2015.

A. Sharma, V. V. Tyagi, C. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew. Sust. Energy Rev, vol.13, pp.318-345, 2009.

L. Colla, D. Ercole, L. Fedele, S. Mancin, O. Manca et al., Nano-phase change materials for electronics cooling applications, vol.139, 2017.

A. K. Pandey, M. S. Hossain, V. V. Tyagi, N. Abd-rahim, J. A. Selvaraj et al., Novel approaches and recent developments on potential applications of phase change materials in solar energy, Renew. Sustain. Energy Rev, vol.82, pp.281-323, 2018.

E. Oró, L. Miró, M. M. Farid, and L. F. Cabeza, Thermal analysis of a low temperature storage unit using phase change materials without refrigeration system, Int. J. Refrig, vol.35, pp.1709-1714, 2012.

E. Oró, L. Miró, M. M. Farid, and L. F. Cabeza, Improving thermal performance of freezers using phase change materials, Int. J. Refrig, vol.35, pp.984-991, 2012.

, Nanomaterials 2020, vol.10, p.19

C. Veerakumar and A. Sreekumar, Phase change material based cold thermal energy storage: Materials, techniques and applications-a review, Int. J. Refrig, vol.67, pp.271-289, 2016.

Y. Yusufoglu, T. Apaydin, S. Yilmaz, and H. O. Paksoy, Improving performance of household refrigerators by incorporating phase change materials, Int. J. Refrig, vol.57, pp.173-185, 2015.

I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications, 2016.

T. Qian, J. Li, H. Ma, and J. Yang, Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material, Polym. Compos, vol.37, pp.854-860, 2016.

K. Pielichowska and K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci, vol.65, pp.67-123, 2014.

K. Pielichowski and K. Flejtuch, Differential scanning calorimetry studies on poly (ethylene glycol) with different molecular weights for thermal energy storage materials, Polym. Advan. Technol, vol.13, pp.690-696, 2002.

L. F. Cabeza, A. Castell, C. Barreneche, A. De-gracia, and A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew. Sustain. Energy Rev, vol.15, pp.1675-1695, 2011.

A. Babapoor, G. Karimi, and M. Khorram, Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning, Appl. Therm. Eng, vol.99, pp.1225-1235, 2016.

J. Khodadadi and S. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NePCM) with great potential for improved thermal energy storage, Int. Commun. Heat Mass, vol.34, pp.534-543, 2007.

H. Nazir, M. Batool, F. J. Bolivar-osorio, M. Isaza-ruiz, X. Xu et al.,

A. M. Kannan, Recent developments in phase change materials for energy storage applications: A review, Int. J. Heat Mass Tran, vol.129, pp.491-523, 2019.

C. Y. Zhao, W. Lu, and Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs), Sol. Energy, vol.84, pp.1402-1412, 2010.

Y. Liu, X. Li, P. Hu, and G. Hu, Study on the supercooling degree and nucleation behavior of water-based graphene oxide nanofluids pcm, Int. J. Refrig, vol.50, pp.80-86, 2015.

A. L. Pisello, R. Paolini, M. V. Diamanti, E. Fortunati, V. L. Castaldo et al., Nanotech-based cool materials for building energy efficiency, Nano and Biotech Based Materials for Energy Building Efficiency, pp.245-278, 2016.

S. R. Shamshirgaran, A. M. Khalaji, and S. K. Viswanatha, Application of nanomaterials in solar thermal energy storage, Heat Mass Transf, vol.54, pp.1555-1577, 2018.

S. S. Murshed and P. Estellé, A state of the art review on viscosity of nanofluids, Renew. Sust. Energy Rev, vol.76, pp.1134-1152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01500498

J. P. Vallejo, G. ?y?a, J. Fernández-seara, and L. Lugo, Rheological behaviour of functionalized graphene nanoplatelet nanofluids based on water and propylene glycol:water mixtures, Int. Commun. Heat Mass, vol.99, pp.43-53, 2018.

G. ?y?a, J. Fal, and P. Estellé, Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN-EG) nanofluids with various size of particles, Int. J. Heat Mass Tran, vol.113, pp.1189-1199, 2017.

G. ?y?a, J. P. Vallejo, and L. Lugo, Isobaric heat capacity and density of ethylene glycol based nanofluids containing various nitride nanoparticle types: An experimental study, J. Mol. Liq, vol.261, pp.530-539, 2018.

D. Cabaleiro, C. Gracia-fernández, J. Legido, and L. Lugo, Specific heat of metal oxide nanofluids at high concentrations for heat transfer, Int. J. Heat Mass Tran, vol.88, pp.872-879, 2015.

P. Estellé, D. Cabaleiro, G. ?y?a, L. Lugo, and S. S. Murshed, Current trends in surface tension and wetting behavior of nanofluids, Renew. Sustain. Energy Rev, vol.94, pp.931-944, 2018.

R. Savino, R. Di-paola, A. Cecere, and R. Fortezza, Self-rewetting heat transfer fluids and nanobrines for space heat pipes, Acta Astronaut, vol.67, pp.1030-1037, 2010.

R. Singh, S. Sadeghi, and B. Shabani, Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications, vol.12, 2019.

M. Marcos, D. Cabaleiro, M. Guimarey, M. Comuñas, L. Fedele et al., PEG400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets, vol.8, p.16, 2017.

J. Yang, L. Tang, R. Bao, L. Bai, Z. Liu et al., Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets, Chem. Eng. J, vol.315, pp.481-490, 2017.

M. A. Marcos, N. E. Podolsky, D. Cabaleiro, L. Lugo, A. O. Zakharov et al., MWCNT in PEG-400 nanofluids for thermal applications: A chemical, physical and thermal approach, J. Mol. Liq, vol.294, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02310258

E. M. Anghel, P. M. Pavel, M. Constantinescu, S. Petrescu, I. Atkinson et al., Thermal transfer performance of a spherical encapsulated PEG6000-based composite for thermal energy storage, Appl. Energy, vol.208, pp.1222-1231, 2017.

B. Tang, J. Cui, Y. Wang, C. Jia, and S. Zhang, Facile synthesis and performances of PEG/SiO 2 composite form-stable phase change materials, Sol. Energy, vol.97, pp.484-492, 2013.

B. Tang, M. Qiu, and S. Zhang, Thermal conductivity enhancement of PEG/SiO 2 composite PCM by in situ Cu doping, Sol. Energy Mat. Sol. Cells, vol.105, pp.242-248, 2012.

B. Tang, C. Wu, M. Qiu, X. Zhang, S. Zhang et al., SiO 2 -Al 2 O 3 hybrid form-stable phase change materials with enhanced thermal conductivity, Mater. Chem. Phys, vol.144, pp.162-167, 2014.

L. Feng, J. Zheng, H. Yang, Y. Guo, W. Li et al., Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials, Sol. Energy Mat. Sol. Cells, vol.95, pp.644-650, 2011.

H. Yang, L. Feng, C. Wang, W. Zhao, and X. Li, Confinement effect of SiO 2 framework on phase change of peg in shape-stabilized PEG/SiO 2 composites, Eur. Polym. J, vol.48, pp.803-810, 2012.

J. Li, L. He, T. Liu, X. Cao, and H. Zhu, Preparation and characterization of PEG/SiO 2 composites as shape-stabilized phase change materials for thermal energy storage, Sol. Energy Mat. Sol. Cells, vol.118, pp.48-53, 2013.

B. Tang, Y. Wang, M. Qiu, and S. Zhang, A full-band sunlight-driven carbon nanotube/PEG/SiO 2 composites for solar energy storage, Sol. Energy Mat. Sol. Cells, vol.123, pp.7-12, 2014.

Z. Liu, H. Wei, B. Tang, S. Xu, and Z. Shufen, Novel light-driven CF/PEG/SiO 2 composite phase change materials with high thermal conductivity, Sol. Energy Mat. Sol. Cells, vol.174, pp.538-544, 2018.

X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao et al., Thermal conductivity enhancement dependent ph and chemical surfactant for Cu-H 2 O nanofluids, Thermochim. Acta, vol.469, pp.98-103, 2008.

H. E. Patel, S. K. Das, T. Sundararajan, N. A. Sreekumaran, B. George et al., Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett, vol.83, pp.2931-2933, 2003.

W. Yu, H. Xie, L. Chen, and Y. Li, Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles, Powder Technol, vol.197, pp.218-221, 2010.

J. L. Zeng, L. X. Sun, F. Xu, Z. C. Tan, Z. H. Zhang et al., Study of a PCM based energy storage system containing Ag nanoparticles, J. Therm. Anal. Calorim, vol.87, pp.371-375, 2007.

Y. Deng, J. Li, T. Qian, W. Guan, Y. Li et al., Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem. Eng. J, vol.295, pp.427-435, 2016.

T. Qian, J. Li, X. Min, W. Guan, Y. Deng et al., Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage, J. Mater. Chem. A, vol.3, pp.8526-8536, 2015.

R. Chen, T. X. Phuoc, and D. Martello, Surface tension of evaporating nanofluid droplets, Int. J. Heat Mass Tran, vol.54, pp.2459-2466, 2011.

L. Godson, B. Raja, D. M. Lal, and S. Wongwises, Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid, vol.23, pp.317-332, 2010.

H. Lee, K. Chou, and K. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology, vol.16, 2005.

K. Ankireddy, S. Vunnam, J. Kellar, and W. Cross, Highly conductive short chain carboxylic acid encapsulated silver nanoparticle based inks for direct write technology applications, J. Mater. Chem. C, vol.1, pp.572-579, 2013.

, Nanomaterials 2020, vol.10

W. Parker, R. Jenkins, C. Butler, and G. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys, vol.32, pp.1679-1684, 1961.

S. Mourdikoudis, R. M. Pallares, and N. T. Thanh, Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties, Nanoscale, vol.10, pp.12871-12934, 2018.

S. M. Ghaseminezhad, S. Hamedi, and S. A. Shojaosadati, Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties, Carbohydr. Polym, vol.89, pp.467-472, 2012.

N. Huang, H. Lim, S. Radiman, P. Khiew, W. Chiu et al., Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties, Colloids Surf. A Physicochem. Eng. Asp, vol.353, pp.69-76, 2010.

E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-szczesna, G. Celichowski et al., Detection limits of dls and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids, J. Nanomater, issue.10, 2013.

N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch, Carbohyd. Res, vol.341, 2006.

S. Ottani, D. Vitalini, F. Comelli, and C. Castellari, Densities, viscosities, and refractive indices of poly(ethylene glycol) 200 and 400 + cyclic ethers at 303.15 k, J. Chem. Eng. Data, vol.47, pp.1197-1204, 2002.

S. Ottani, D. Vitalini, F. Comelli, and C. Castellari, Densities, viscosities, and refractive indices of new mixtures of poly(ethylene glycols) + dialkyl carbonates at 313.15 k, J. Chem. Eng. Data, vol.49, pp.148-154, 2004.

L. Fedele, L. Colla, and S. Bobbo, Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles, Int. J. Refrig, vol.35, pp.1359-1366, 2012.

L. Colla, L. Fedele, and M. H. Buschmann, Laminar mixed convection of TiO 2 -water nanofluid in horizontal uniformly heated pipe flow, Int. J. Therm. Sci, vol.97, pp.26-40, 2015.

L. Fedele, L. Colla, S. Bobbo, S. Barison, and F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale Res. Lett, vol.6, 2011.

D. Cabaleiro, C. Gracia-fernández, and L. Lugo, solid+liquid) phase equilibria and heat capacity of (diphenyl ether+biphenyl) mixtures used as thermal energy storage materials, J. Chem. Thermodyn, vol.74, pp.43-50, 2014.

M. Rodríguez-pérez, J. Reglero, D. Lehmhus, M. Wichmann, J. De-saja et al., The Transient Plane Source Technique (TPS) to Measure Thermal Conductivity and its Potential as A Tool to Detect In-Homogeneities in Metal Foams, Proceedings of the International Conference, pp.253-257, 2003.

E. Lemmon, M. Huber, and M. Mclinden, Reference Fluid Thermodynamic and Transport Properties (Refprop), vol.23, 2010.

S. Bobbo, L. Fedele, A. Benetti, L. Colla, M. Fabrizio et al., Viscosity of water based SWCNH and TiO 2 nanofluids, Exp. Therm. Fluid Sci, vol.36, pp.65-71, 2012.

G. ?y?a, J. P. Vallejo, J. Fal, and L. Lugo, Nanodiamonds-Ethylene glycol nanofluids: Experimental investigation of fundamental physical properties, Int. J. Heat Mass Tran, vol.121, pp.1201-1213, 2018.

N. Berrada, S. Hamze, A. Desforges, J. Ghanbaja, J. Gleize et al., Surface tension of functionalized mwcnt-based nanofluids in water and commercial propylene-glycol mixture, J. Mol. Liq, vol.293, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02265963

R. Gómez-villarejo, T. Aguilar, S. Hamze, P. Estellé, and J. Navas, Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties, J. Mol. Liq, vol.277, pp.93-103, 2019.

R. Francesconi, A. Bigi, K. Rubini, and F. Comelli, Molar heat capacities, densities, viscosities, and refractive indices of poly (ethylene glycols)+ 2-methyltetrahydrofuran at (293.15, 303.15, and 313.15) K, J. Chem. Eng. Data, vol.52, pp.2020-2025, 2007.

Y. Touloukian and E. Buyco, Specific heat-metallic elements and alloys, Thermophysical Properties of Matter

T. The and . Series, , vol.4, 1971.

S. Zhou and R. Ni, Measurement of the specific heat capacity of water-based Al 2 O 3 nanofluid, Appl. Phys. Lett, vol.92, p.93123, 2008.

, Nanomaterials 2020, vol.10

H. O'hanley, J. Buongiorno, T. Mckrell, and L. Hu, Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry, Adv. Mech. Eng, 2012.

J. C. Maxwell, A Treatise on Electricity and Magnetism, vol.1, 1873.

W. H. Azmi, K. V. Sharma, R. Mamat, G. Najafi, and M. S. Mohamad, The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids-A review, Renew. Sust. Energy Rev, vol.53, pp.1046-1058, 2016.

M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, The effect of particle size on the thermal conductivity of alumina nanofluids, J. Nanopart. Res, vol.11, pp.1129-1136, 2009.

E. V. Timofeeva, A. N. Gavrilov, J. M. Mccloskey, Y. V. Tolmachev, S. Sprunt et al., Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, Phys. Rev. E, vol.76, p.61203, 2007.

M. Frank and D. Drikakis, Solid-like heat transfer in confined liquids, Microfluid Nanofluidics, vol.21, 2017.

M. Frank, D. Drikakis, and N. Asproulis, Thermal conductivity of nanofluid in nanochannels, Microfluid. Nanofluidics, vol.19, pp.1011-1017, 2015.

S. Murshed, K. Leong, and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci, vol.47, pp.560-568, 2008.

M. Frank and D. Drikakis, Thermodynamics at solid-liquid interfaces, Entropy, vol.20, 2018.

V. Halté, J. Bigot, B. Palpant, M. Broyer, B. Prével et al., Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices, Appl. Phys. Lett, vol.75, pp.3799-3801, 1999.

S. Özerinç, S. Kakaç, and A. G. Yaz?c?oglu, Enhanced thermal conductivity of nanofluids: A state-of-the-art review, Microfluid. Nanofluid, vol.8, pp.145-170, 2010.

P. Warrier and A. Teja, Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles, Nanoscale Res. Lett, 2011.

P. Nath and K. L. Chopra, Thermal conductivity of copper films. Thin Solid Film, vol.20, pp.53-62, 1974.

S. Trivedi, C. Bhanot, and S. Pandey, Densities of {poly(ethylene glycol)+water} over the temperature range (283.15 to 363.15) K, J. Chem. Thermodyn, vol.42, pp.1367-1371, 2010.

W. Afzal, A. H. Mohammadi, and D. Richon, Volumetric properties of mono-, di-, tri-, and polyethylene glycol aqueous solutions from (273.15 to 363.15) K: Experimental measurements and correlations, J. Chem. Eng. Data, vol.54, pp.1254-1261, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509614

F. Han, J. Zhang, G. Chen, and X. Wei, Density, viscosity, and excess properties for aqueous poly(ethylene glycol) solutions from (298.15 to 323.15) k, J. Chem. Eng. Data, vol.53, pp.2598-2601, 2008.

M. Nakhjavani, V. Nikkhah, M. M. Sarafraz, S. Shoja, and M. Sarafraz, Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour, vol.53, pp.3201-3209, 2017.

M. Bahiraei and S. Heshmatian, Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers, Appl. Therm. Eng, vol.127, pp.1233-1245, 2017.

H. Yarmand, S. Gharehkhani, G. Ahmadi, S. F. Shirazi, S. Baradaran et al., Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer, Energy Convers. Manag, vol.100, pp.419-428, 2015.

T. T. Nguyen and J. S. Park, Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials, J. Appl. Polym. Sci, vol.121, pp.3596-3603, 2011.

H. Chen, Y. Ding, and C. Tan, Rheological behaviour of nanofluids, New J. Phys, vol.9, p.367, 2007.

E. Tamjid and B. H. Guenther, Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol, Powder Technol, vol.197, pp.49-53, 2010.

C. Angell, D. Macfarlane, and M. Oguni, The kauzmann paradox, metastable liquids, and ideal glasses, Ann. N. Y. Acad. Sci, vol.484, pp.241-247, 1986.

X. Paredes, A. S. Pensado, M. A. Comuñas, and J. Fernández, How pressure affects the dynamic viscosities of two poly (propylene glycol) dimethyl ether lubricants, J. Chem. Eng. Data, vol.55, pp.4088-4094, 2010.

K. R. Siongco, R. B. Leron, and M. Li, Densities, refractive indices, and viscosities of n,n-diethylethanol ammonium chloride-glycerol or -ethylene glycol deep eutectic solvents and their aqueous solutions, J. Chem. Thermodyn, vol.65, pp.65-72, 2013.

I. M. Hodge, Strong and fragile liquids-A brief critique, J. Non-Cryst. Solids, vol.202, pp.164-172, 1996.

A. D. Zadeh and D. Toghraie, Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions, J. Therm. Anal. Calorim, vol.131, pp.1449-1461, 2018.

A. Einstein, Eine neue bestimmung der moleküldimensionen, Ann. Phys, vol.324, pp.289-306, 1906.

T. Chow, Viscosities of concentrated dispersions, Phys. Rev. E, vol.48, 1977.

R. Pal and E. Rhodes, Viscosity/concentration relationships for emulsions, J. Rheol, vol.33, pp.1021-1045, 1989.

D. Fu, L. Du, and H. Wang, Experiment and model for the surface tension of MEA-PEG400 and DEA-PEG400 aqueous solutions, J. Chem. Thermodyn, vol.69, pp.132-136, 2014.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI