C. Cotrutz, M. Lahanas, C. Kappas, and D. Baltas, A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy, Phys Med Bio, vol.46, issue.8, pp.2161-2175, 2001.

L. Xing, J. G. Li, and A. Pugachev, Estimation theory and model parameter selection for therapeutic treatment plan optimization, Med Phys, vol.26, issue.11, pp.2348-2358, 1999.

S. Das, A role for biological optimization within the current treatment planning paradigm, Med Phys, vol.36, issue.10, pp.4672-4682, 2009.

X. Wu and Y. Zhu, An optimization method for importance factors and beam weights based genetic algorithms for radiotherapy treatment planning, Phys Med Bio, vol.46, issue.4, pp.1085-1099, 2001.

D. Craft, T. Halabi, and T. Bortfeld, Exploration of tradeoffs in intensity-modulated radiotherapy, Phys Med Bio, vol.50, issue.24, pp.5857-5868, 2005.

C. Holdsworth, M. Kim, J. Liao, and M. H. Phillips, A hierarchical evolutionary algorithm for multiobjective optimization in IMRT, Med Phys, vol.37, issue.9, pp.4986-4997, 2010.

C. Holdsworth, R. D. Stewart, and M. Kim, Investigation of effective decision criteria for multiobjective optimization in IMRT, Med Phys, vol.38, issue.6, pp.2964-2974, 2012.

M. Zarepisheh, A. F. Uribe-sanchez, and N. Li, A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization, Med Phys, vol.41, issue.4, p.41705, 2014.

R. Bokrantz and K. Miettinen, Projections onto the Pareto surface in multicriteria radiation therapy optimization, Med Phys, vol.42, issue.10, pp.5862-5870, 2015.

L. Xing, J. G. Li, and S. Donaldson, Optimization of importance factors in inverse planning, Phys Med Biol, vol.44, issue.10, pp.2525-2536, 1999.

R. Lu, Learning the relationship between patient geometry and beam intensity in breast intensity-modulated radiotherapy, IEEE Trans Biomed Eng, vol.53, issue.5, pp.908-920, 2006.

B. Wu, Patient geometry-driven information retrieval for IMRT treatment plan quality control, Med Phys, vol.36, issue.12, pp.5497-5505, 2009.

V. Chanyavanich, S. K. Das, and W. R. Lee, Knowledge-based IMRT treatment planning for prostate cancer, Med Phys, vol.38, issue.5, pp.2515-2522, 2011.

K. L. Moore, R. S. Brame, and D. A. Low, Experience-based quality control of clinical intensity-modulated radiotherapy planning, Int J Radiat Oncol Bio Phys, vol.81, issue.2, pp.545-551, 2011.

N. Li, Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs, Phys Med Biol, vol.58, issue.24, pp.8725-8738, 2013.

M. Zarepisheh, A DVH-guided optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning, Med Phys, vol.41, issue.6, p.61711, 2012.

T. Song, An Automated treatment plan quality control tool for intensity-modulated radiation therapy using a voxel-weighting factor-based re-optimization algorithm, PLoS One, vol.11, issue.3, p.149273, 2016.

B. Wu, Data-driven approach to generating achievable dosevolume histogram objectives in intensity-modulated radiotherapy planning, Int J Radiat Oncol Biol Phys, vol.79, issue.4, pp.1241-1247, 2011.

S. F. Petit, Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma, Radiother Oncol, vol.102, issue.1, pp.38-44, 2012.

D. Good, J. Lo, and W. R. Lee, A knowledge based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning, Int J Radiat Oncol Biol Phys, vol.87, issue.1, pp.176-181, 2013.

Y. Wang, A quality control model that uses PTV-rectal distances to predict lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer, Radiother Oncol, vol.107, issue.3, pp.352-357, 2013.

Y. Yang, An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection, Med Phy, vol.40, issue.1, p.11709, 2013.

L. Yuan, Y. Ge, and W. R. Lee, Quantitative analysis of the factors which affect the interpatient organ at-risk dose sparing variation in IMRT plans, Med Phys, vol.39, issue.11, pp.6868-6878, 2012.

K. L. Moore, R. S. Brame, and D. A. Low, Quantitative metrics for assessing plan quality, Semin Radiat Oncol, vol.22, issue.1, pp.62-69, 2012.

T. Lee, M. Hammad, and C. Y. Timothy, Predicting objective function weights from patient anatomy in prostate IMRT treatment planning, Med Phys, vol.40, issue.12, pp.1394-1396, 2013.

X. Zhu, Y. Ge, and T. Li, A planning quality evaluation tool for prostate adaptive IMRT based on machine learning, Med Phys, vol.38, issue.5, pp.719-726, 2011.

H. H. Zhang, R. R. Meyer, and L. Shi, The minimum knowledge base for predicting organ-at-risk dose-volume levels and plan-related complications in IMRT planning, Phy Med Biol, vol.55, issue.7, pp.1935-1947, 2010.

L. M. Appenzoller, J. M. Michaski, and W. L. Thorstad, Predicting dose-volume histograms for organs-at-risk in IMRT planning, Med Phys, vol.39, issue.12, pp.7446-7461, 2012.

J. Dias, H. Rocha, and T. Ventura, Automated fluence map optimization based on fuzzy inference systems, Med Phys, vol.43, issue.3, pp.1083-1095, 2016.

D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math Program, vol.45, issue.1, pp.503-528, 1989.

A. Niemierko, A generalized concept of equivalent uniform dose, Med Phys, vol.24, issue.1, pp.103-110, 1997.

A. Niemierko, Image-guided IMRT, Proc Biol optim, vol.65, issue.4, pp.199-216, 2006.

Q. Wu and R. Mohan, Algorithms and functionality of an intensity modulated radiotherapy optimization system, Med Phys, vol.27, issue.4, pp.701-711, 2000.

Q. Wu, R. Mohan, and A. Niemierko, Optimization of intensitymodulated radiotherapy plans based on the equivalent uniform dose, Int J Radiat Oncol Bio Phys, vol.52, issue.1, pp.224-235, 2002.

B. Choi and J. O. Deasy, The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning, Phys Med Biol, vol.47, issue.20, pp.3579-3589, 2002.

C. Thieke, T. Bortfeld, and A. Niemieko, From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning, Med Phys, vol.30, issue.9, pp.2332-2339, 2003.

M. Hartmann and L. Bogner, Investigation of intensity-modulated radiotherapy optimization with gEUD-based objectives by means of simulated annealing, Med Phys, vol.35, issue.5, pp.2041-2049, 2008.

A. L. Hoffmann, H. D. Den, and A. Y. Siem, Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects, Phy Med Biol, vol.53, issue.22, pp.6345-6362, 2008.

D. N. Mihailidis, Superiority of equivalent uniform dose (EUD)-based optimization for breast and chest wall, Med Dosim, vol.35, issue.1, pp.67-76, 2010.

T. Dirscherl, J. Alvarez-moret, and L. Bogner, Advantage of biological over physical optimization in prostate cancer, Z Med Phys, vol.21, issue.21, pp.228-235, 2011.

Q. Diot, B. Kavanagh, and R. Timmerman, Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy, Med Phys, vol.39, issue.1, pp.237-245, 2012.

R. Mohan, Clinically relevant optimization of 3-D conformal treatments, Med Phys, vol.19, issue.4, pp.933-944, 1992.

P. Stavrev, D. Hristov, and B. Warkentin, Inverse treatment planning by physically constrained minimization of a biological objective function, Med Phys, vol.30, issue.11, pp.2948-2958, 2003.

M. L. Kessler, Costlets: a generalized approach to cost functions for automated optimization of IMRT treatment plans, Optim Eng, vol.6, issue.4, pp.421-448, 2005.

J. Miller, M. Fuller, and S. Vinod, The significance of the choice of Radiobiological (NTCP) models in treatment plan objective functions, Australas Phys Eng Med, vol.32, issue.2, pp.81-87, 2009.

P. Svolos, L. Tsougos, and T. Kyrgias, On the use of published radiobiological parameters and the evaluation of NTCP models regarding lung pneumonitis in clinical breast radiotherapy, Australas Phys Eng Med, vol.34, issue.1, pp.69-81, 2011.

L. X. Allen, The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM, Med Phys, vol.39, issue.3, pp.1386-1409, 2012.

J. T. Lyman, Complication probability as assessed from dosevolume histograms, Radiat Res, vol.8, issue.2, pp.13-19, 1985.

G. J. Kutcher and C. Burman, Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method, Int J Radiat Oncol Biol Phys, vol.16, issue.6, pp.1623-1630, 1989.

C. P. Guo, P. C. Zhang, and Z. G. Gui, An efficient method for improving the dose-volume-based optimization plan quality, IEEE Access, vol.5, pp.7520-7531, 2017.

E. Dale, T. P. Hellebust, and A. Skjønsberg, Modeling normal tissue complication probability from repetitive computed tomography scans during fractionated high-dose-rate brachytherapy and external beam radiotherapy of the uterine cervix, Int J Radiat Oncol Biol Phys, vol.47, issue.4, pp.963-971, 2000.

S. T. Peeters, M. S. Hoogeman, and W. D. Heemsbergen, Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: normal tissue complication probability modeling, Int J Radiat Oncol Biol Phys, vol.66, issue.1, pp.11-19, 2006.

C. P. Guo, P. C. Zhang, and L. Y. Zhang, Application of optimization model with piecewise penalty to intensity-modulated radiation therapy, FGCS, vol.81, pp.280-290, 2018.

A. Ahnesjö, A pencil beam model for photon dose calculation, Med Phys, vol.19, issue.2, pp.263-273, 1992.

J. O. Deasy, A. I. Blanco, and C. Vh, CERR: a computational environment for radiotherapy research, Med Phys, vol.30, issue.5, pp.979-985, 2003.

L. B. Marks, E. D. Yorke, and A. Jackson, Use of normal tissue complication probability models in the clinic, Int J Radia Oncol Biol Phys, vol.76, issue.3, pp.10-19, 2010.

X. Wang, Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma, Int J Radiat Oncol Biol Phys, vol.63, issue.2, pp.594-601, 2005.