
HAL Id: hal-02432462
https://univ-rennes.hal.science/hal-02432462

Submitted on 23 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Salient video object detection using a virtual border and
guided filter

Qiong Wang, Lu Zhang, Wenbin Zou, Kidiyo Kpalma

To cite this version:
Qiong Wang, Lu Zhang, Wenbin Zou, Kidiyo Kpalma. Salient video object detection using a virtual
border and guided filter. Pattern Recognition, 2020, 97, pp.106998. �10.1016/j.patcog.2019.106998�.
�hal-02432462�

https://univ-rennes.hal.science/hal-02432462
https://hal.archives-ouvertes.fr


Video salient object detection using a virtual border
and guided filter

Qiong WANGa,b,∗, Lu ZHANGb,∗, Wenbin ZOUc, Kidiyo KPALMAb

aCollege of Computer Science and Technology, Zhejiang University of Technology, No.288
Road Liuhe, Hangzhou 310023, China

bUniv Rennes, INSA Rennes, CNRS, IETR (Institut d’Electronique et de
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Abstract

In this paper, we present a novel method for salient object detection in videos.

Salient object detection methods based on background prior may miss salient

region when the salient object touches the frame borders. To solve this problem,

we propose to detect the whole salient object via the adjunction of virtual

borders. A guided filter is then applied on the temporal output to integrate the

spatial edge information for a better detection of the salient object edges. At

last, a global spatio-temporal saliency map is obtained by combining the spatial

saliency map and the temporal saliency map together according to the entropy.

The proposed method is assessed on three popular datasets (Fukuchi, FBMS

and VOS) and compared to several state-of-the-art methods. The experimental

results show that the proposed approach outperforms the tested methods.
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1. Introduction

The human vision system has an effective ability to easily recognize interest-

ing regions from complex scenes, even if the focused regions have similar colors

or shapes as the background. Salient object detection aims to detect the salient

object that attracts the most the visual attention. The output of the salient5

object detection is a saliency map where the pixel values indicate the probability

of each pixel of belonging to the salient object. Higher value represents higher

saliency. This topic has gained much attention for its wide applications, such

as image registration[1, 2], object segmentation[3, 4], person identification [5],

spectral-spatial reconstruction [6] and etc.10

Existing salient object detection methods can be roughly divided into two

categories: traditional methods and deep learning-based methods, which are

interesting and useful for different applications. For a given database, deep

learning-based methods have a better performance than many recent traditional

methods. But the premise is it should be trained with huge and rich training15

datasets, which is impossible for some applications where the available data

is small. Traditional methods are however intrinsically unassailable from such

limitation. In this study, we will focus on the traditional approach, but we will

also show how the performance of our proposed model can be further improved

by integrating a deep learning-based method.20

According to the type of source information, salient object detection ap-

proaches can be broadly grouped into two categories: image salient object de-

tection models and video salient object detection models. Image salient object

detection models the visual input viewing process based on the appearance of

the scene. Since the human vision system is sensitive to motions, video salient25

object detection detects the salient object using cues in both spatial domain and

temporal domain and becomes much popular. However, due to the limitation

of leverage of the saliency cues from two domains, video salient object detection

is still challenging. In this paper, we focus on video salient object detection.

The “background prior”[7] assumption is widely used in salient object detec-30

2

Acc
ep

ted
 m

an
us

cri
pt



Frame [8] [9] [10] Ours Ground truth

Figure 1: State-of-the-art saliency maps [8, 9, 10].

tion approaches. It assumes that a narrow border of the image is the background

region. This assumption is normally true because the important object is often

located in the frame center by the photographers. Based on this assumption,

the distance transform has been widely used for saliency computation. Tradi-

tionally, the distance transforms measure the distance of a pixel and the seed35

set using different path cost functions. Since background regions are assumed to

be connected to image borders, the border pixels are initialized as the seed set

and the distance transform detects a pixel’s saliency by computing the shortest

path from the pixel to the seed. The larger the shortest path is, the higher

the saliency is. It has achieved a success in salient object detection, but a few40

commonly observable issues still exist. In the background prior, all the border

pixels are regarded as background. Thus, in the distance transform, all the bor-

der pixels are set to be seed and their saliency values are thus zeros. When the

salient object pixels appear in the border, their saliency values are consequently

set to zeros. Though some methods [8, 9, 10] can alleviate this problem, but not45

enough. Fig.1 illustrates this problem by showing the saliency maps of some

existing methods on one example image.

Video salient object detection detects the salient object from both spatial

domain and temporal domain. How to combine these two saliencies together

during the detection is complex. One usual way (called “Feature fusion”) is to50

fuse the extracted spatial feature and extracted temporal feature together to give

a spatio-temporal feature. Considering the spatial gradient magnitudes and fus-

ing them with the temporal gradient magnitudes into spatio-temporal edges is

a popular Feature fusion way. The resulted spatio-temporal edges may still give
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Frame [13] [11] [12] Ours Ground truth

Figure 2: State-of-the-art saliency maps [13, 11, 12].

inaccurate salient object detection. Another usual way (called “Map fusion”) is55

to combine the spatial saliency map and the temporal saliency map together.

The existing simple linear or non-linear way is still insufficient to decide the con-

fidence weight for each saliency map. In order to employ more video saliency

information, these two techniques are used together recently. However, in com-

plex scenes, the methods still could not fully make use of detected saliency from60

the two domains. Some examples are shown in Fig.2. For models [11, 12, 13],

the salient object has been located but still with blur edges. Thus, the fusion

is still a much more challenging problem.

Facing these open issues, we propose a new video salient object detection

algorithm by addressing:65

1) the problem of detecting a complete salient object connected to bor-

ders using the distance transform with a virtual border-based technique which

consists of four steps which are a) Frame Border Selection, b) Frame Border

Division, c) Representative Pixel Selection and d) Virtual Border Padding. In

spatial domain, the virtual border is added to the frame aiming to detect the70

whole salient object. In temporal domain, it is also added to the color optical

flow map in order to detect the complete salient object motion and then obtain

the salient object by filtering the global motion out.

2) the Feature fusion problem by using an edge-aware filter, called the guided

filter [14]. It is introduced to preprocess the virtual border-based color optical75

flow map for enhancing object edges.

3) the Map fusion problem by computing the entropy and the standard

deviations to decide the confidence level of the spatial saliency map and the
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temporal saliency map.

The remaining of this paper is organized as follows. Section 2 briefly de-80

scribes the related work. Section 3 presents the proposed method in detail. In

Section 4, we conduct comparison experiments to evaluate the performance of

the proposed method. Section 5 concludes the paper.

2. RELATED WORK

This section introduces the recent works related to the video salient object85

detection (SOD). SOD in videos is closely related to SOD in images. Recent

traditional methods for image SOD and video SOD are introduced respectively.

Then, deep learning-based methods are summarized.

2.1. Traditional image SOD methods

Image SOD methods are fully exploited in recent years. We will give ex-90

amples of some important categories, including graph-based approaches, prob-

abilistic models and cognitive methods.

For graph-based approaches, Shan et al. [15] use background weight map as

propagating seeds and design a third-order smoothness framework to improve

the performance of manifold ranking. Jiang et al. [10] propose a saliency detec-95

tion via absorbing Markovian chain. Zhang et al. [9], Tu et al. [8] and Huang et

al. [16] compute the saliency based on the minimum barrier distance transform.

Lie et al. [17] improve the detection speed using the upsampling of random color

distance map. For probabilistic models, Aytekin et al. [18] adopt a probabilistic

mass function to encode the boundary connectivity saliency cue and smooth-100

ness constraints into a global optimization problem. Li et al. [19] propose an

optimization model based on conditional random fields and geodesic weighted

Bayesian model. For cognitive method, Yan et al. [20] combine bottom-up and

top-down attention mechanisms to focus on the salient object. Peng et al. [21]

propose a tree-structured sparsity-inducing norm, and introduce a Laplacian105

regularization, and employ the high-level prior to detect the salient object.
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2.2. Traditional video SOD methods

According to different types of spatial and temporal information to be fused,

we roughly divide the traditional methods into three categories: “Feature fu-

sion”, “Map fusion” and “Hybrid fusion”.110

As a “Feature fusion” method, Wang et al. [12] fuses the color gradient

magnitude and optical flow gradient magnitude in a non-linear way. Wang et

al. [22] fuse the spatial edge to temporal optical flow by using guided filter.

Bhattacharya et al. [23] use a weighted sum of the sparse spatio-temporal

features.115

As a “Map fusion” method, Tu et al. [24] generate two types of saliency maps

based on a foreground connectivity saliency measure, and exploit an adaptive

fusion strategy. Yang et al. [25] propose a confidence-guided energy function to

adaptively fuse spatial and temporal saliency maps.

“Hybrid fusion” can be considered as a combination of “Feature fusion” and120

“Map fusion”. Li et al. [26] fuse the spatial and temporal channel to generate

saliency maps, and then use saliency-guided stacked autoencoders to get the

final saliency map. Chen et al. [27] obtain the motion saliency map with

spatial cue, then use k-Nearest Neighbors-histogram based filter and Markov

random field to eliminate the dynamic backgrounds. Kim et al. [11] detect125

the salient object based on the theory of random walk with restart. Liu et

al. [13] obtain temporal saliency propagation using spatial appearance, which

spatial propagation is performed via the temporal saliency map. Wang et al.

[4, 28] produce spatio-temporal edge map to get the saliency map based on

the geodesic distance, which is then combined with global appearance models130

and with dynamic location models. Xi et al. [29] first get spatio-temporal

background priors, and then take the sum of appearance and motion saliency as

the final saliency. Zhou et al. [30] propose localized estimation to generate the

temporal saliency map, and deploy the spatio-temporal refinement to get the

final saliency map, which is then used to update the initial saliency map. Chen135

et al. [31] detect the motion cues and spatial saliency map to get the motion

energy term, which are combined with some constraints and formulated into
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the optimization framework. Ramadan et al. [32] applies the pattern mining

algorithm to detect spatio-temporal saliency patterns. Guo et al. [33] select a

set of salient proposals via a ranking strategy. Chen et al. [34] get the temporal140

saliency map to facilitate the color saliency computation. Chen et al. [35]

utilize Markov random field to conduct semantic labeling and learn multiple

nonlinear feature transformations to enlarge the feature difference between the

salient object and backgrounds.

2.3. Deep learning-based methods145

Recently, deep neural networks are more and more used in SOD for their high

efficiency and effectiveness. For image SOD, Liu et al. [36] use a hierarchical

convolutional neural network to detect the object; Hou et al. [37] use deep multi-

scale features instead of hand-crafted features; Lee et al. [38] combine hand-

crafted features and deep features together; Chen et al. [39] learn depth cue to150

help saliency detection; Yuan et al. [40] propose a multiscale and multidepth

network. For video SOD, Wang et al. [41] input two successive frames into the

network to learn spatio-temporal saliency; Tang et al. [42] employ a weakly-

supervised network without needing all training datasets with pixel-wise ground

truth. Compared with the above deep learning and image-based SOD, the deep155

learning and video-based SOD has not been studied widely yet. This is due to

the lack of the large-scale video salient object dataset and the complexity of the

spatial and temporal fusion.

3. PROPOSED ALGORITHM

The block-diagram of the proposed Virtual Border and Guided Filter-based160

(VBGF) method is shown in Fig.3. Given an input video sequence, in spa-

tial saliency detection (SD), the virtual border is built for each frame. Then,

the saliency is computed to get the spatial saliency map (SSM). Secondly, in

temporal saliency detection (TD), the motion information is extracted from

the input video. Then the virtual border building, the Feature fusion and the165
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Figure 3: The proposed block-diagram. SD: spatial saliency detection; SSM: spatial saliency

map; TD: temporal saliency detection; TSM: temporal saliency map; STSM: spatio-temporal

saliency map.

saliency computation are applied to obtain the temporal saliency map (TSM).

At last, the two saliency maps are fused to get the spatio-temporal saliency map

(STSM). The method is detailed in the following parts.

3.1. Spatial saliency detection (SD)

In this section, the virtual border-based distance transform in spatial domain170

is designed.

3.1.1. Virtual border building

We propose to add the virtual border around the original frame to obtain

with-virtual-border frame. The virtual border is built as shown in Fig.4.

a) Frame Border Selection: one frame border is selected to build the virtual175

border by two steps:

• FastMBD [9] is applied to frame α to obtain the map M .

• The frame border nearest to the non-zero region in the map M is selected

to build the virtual border.

b) Frame Border Division: after one border selected, the corresponding di-180

vided border is obtained from the original frame border (with width u). The

divided up border (DUB), divided down border (DDB), divided left border

(DLB) and divided right border (DRB) are shown in the bottom left part in
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Figure 4: Virtual border building: (1) two examples of map M obtained by applying FastMBD

[9] on the frame; and then for each frame, the closest border to the salient region is selected to

build the virtual border; (2) generating the divided border from the highlighted frame border

(with width u), h1 is the frame height, w1 is the frame width and l is set to 18%, four divided

borders: divided up border (DUB), divided down border (DDB), divided left border (DLB),

divided right border (DRB) are shown; (3) the red dotted line denotes the virtual border

padded with the selected representative pixel; (4) building and padding the virtual border

(with size v) with representative pixel value, four virtual borders: virtual up border (VUB),

the virtual down border (VDB), the virtual left border (VLB) and the virtual right border

(VRB), are shown in four different textures.

Fig.4. The reason lying behind this division is that: the region in the frame

corner is often connected with two borders and its feature is also related to185

these two borders. Thus, the irregular shape connecting three borders is used

to calculate the virtual border. The parameters u and l are selected empirically.

In this paper, u is set to 5 and l is set to 18%. Preliminary experiments showed

that these values make the algorithm robust to various background complexities.

c) Representative Pixel Selection: for the generated divided border, the sum

of absolute differences (SAD) is computed for each pixel by summing all the

absolute differences between this pixel and other pixels in the divided border:

SAD(x) =
∑

x′∈DB

|I(x)− I(x′)| (1)

where DB ∈
{

DLB, DUB, DUB, DDB
}

, I is the feature channel. The pixel
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having the minimum SAD is selected to represent the divided border. For color

images, the SAD is computed by summing the three color channels:

colorSAD(x) =
∑

x′∈DB

∑
i∈{r,g,b}

∣∣Ii(x)− Ii(x′)
∣∣ (2)

We have also considered using the mean or median value of the borders190

intensities as the representative pixel value. Various experiments conducted on

different frames have shown that the minimum SAD choice performs better than

the mean and the median values in most of the cases (cf. the 1st example image

in Fig.4 where the representative pixel is chosen from the salient object instead of

the background when using the mean value of the borders intensities). The same195

way, choosing the median value of the border’s intensities as the representative

pixel value fails, which can be seen on the 2nd example image in Fig.4.

d) Virtual Border Padding: around the selected original frame border, we

build the corresponding virtual border with the above representative pixel. The

virtual up border (VUB), the virtual down border (VDB), the virtual left border200

(VLB) and the virtual right border (VRB) are shown in the bottom right part

in Fig.4. Existing methods usually regard the border (with width 1) to be

background and seed sizes are set to be 1. Here we set the virtual border size v

to 5, which helps the proposed “virtual border building” to be applied to other

distance transform based saliency detection methods.205

3.1.2. Saliency computation

After the “virtual border building”, the spatial saliency map SSM is obtained

by apply the FastMBD [9] to the with-virtual-border frame D and then remove

the virtual border region from the resulted map. One example is given to show

the process of spatial saliency detection in Fig.5.210

3.2. Temporal saliency detection (TD)

Given an input video sequence, the movement information is extracted from

the whole video and then the salient object is detected from this movement

information.

10
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Figure 5: (Better viewed in color) An example of the spatial saliency detection. The red

dotted line denotes the virtual border.

3.2.1. Movement extraction215

The optical flow vectors between pairs of successive frames are obtained

using a fast optical flow method [43]. Then the optical flow vector is mapped

to Munsell color system to produce the color optical flow map E (an example

image can be found in Fig.6).

3.2.2. Virtual border building220

Based on the background cue, the global motion is usually connected to E

borders. The global motion is mainly generated by the background and camera

motion. The distance of each pixel to the border pixels of E calculated by

the FastMBD [9] can indicate its temporal saliency. The larger the distance,

the higher the temporal saliency value. As the same problem in the spatial225

saliency detection, when the salient object touches frame borders, its movement

information also touches E borders. If we directly apply the FastMBD [9] on E,

the salient object movement part connected to E borders is hard to be detected.

Thus, we add virtual borders on E using the same procedure as described in

Section 3.1.1 to obtain the with-virtual-border color optical flow map F .230

3.2.3. Feature fusion

We propose a new Feature fusion way that fuses the spatial edge with the

temporal information, considering that: 1) the salient object movement is often

bigger than the background movement, thus the background and the salient

object are often shown in different colors in the color optical flow map; 2) if the

movements within the salient object are different, the salient object cannot be
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detected completely. If the spatial edges are added onto F , the salient object

edges will be enhanced. The pixel’s distance in blur edges will be increased if

the pixel belongs to the salient object or decreased if the pixel belongs to the

background. Thus we performed the guided image filtering. The guided filter

[14] is a linear filtering process, which involves a guidance image C1, an input

image C2 and an output image C3. The C3 at a pixel i is computed using the

filter kernel K which is a function of C1 but independent of C2.

C3
i =

∑
j

Kij(C
1)C2

j , (3)

where i and j are pixel indexes, and

Kij(C
1) = (|ωk|)−2

∑
(i,j)∈ωk

(1 + (C1
i − µk)(C1

j − µk)(σk
2 + ε)−1), (4)

where ωk is the square window centered at the pixel k in C1, |ωk| is the number

of pixels in ωk, ε is a regularization parameter, and µk and σ2
k are the mean and

the variance of C1 in ωk. The main assumption of the guided filter is a local

linear model between C1 and C3. Thus, C3 has an edge if C1 has an edge.235

The proposed method use with-virtual-border frameD as the guidance image

and with-virtual-border color optical flow map F as the input image to get the

filtered image G as Eq (5),

Gi =
∑
j

|ωk|−2
∑

(i,j)∈ωk

(1 + (Di − µk)(Dj − µk)(σk
2 + ε)−1)Fj , (5)

where i and j are pixel indexes, ωk is the square window centered at the pixel k

in Di, µk and σk are the mean and the variance of Di in ωk. ε is set to be 10−6.

|ωk| is decided by the frame size. Large frame size needs large |ωk|. We use

20×20 for Fukuchi and FBMS datasets, and use 60×60 for VOS dataset since

VOS has larger average frame size than that of Fukuchi and FBMS [26, 44][26].240

3.2.4. Saliency computation

The FastMBD [9] is applied on the filtered image G and then the virtual

border region is removed to obtain the temporal saliency map TSM. One ex-
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ample is given to show the process of the temporal saliency detection in Fig.6.

Figure 6: (Better viewed in color) An example of the temporal saliency detection: from two

successive frames, the optical flow vector is extracted and mapped to be the color optical flow

map E. The virtual border is built on map E to generate with-virtual-border color optical

flow map F . The red dotted line denotes the virtual border. After guided filtering, the filtered

image G is generated to produce the temporal saliency map. Ground truth is provided for

comparison.

245

3.3. Map fusion

Given the spatial saliency map SSM and the temporal saliency map TSM,

the fusion is made to obtain spatio-temporal saliency map STSM by four steps:

• SSM and TSM are firstly fused as Eq (6), where ratio1 = muT /(muS +muT ),

ratio2 = 1− ratio1.

STSM = ratio1 × SSM + ratio2 × TSM (6)

where muS and muT are respectively the mean entropies of all the spatial

saliency maps and all the temporal saliency maps for a video sequence

(with κ the number of frames) as Eq (7).

muS =
κ∑

j=1

(−
255∑
j′=1

(ProbS
j

j′ × log(ProbS
j

j′ )))/κ

muT =
κ∑

j=1

(−
255∑
j′=1

(ProbT
j

j′ × log(ProbT
j

j′ )))/κ

(7)
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where ProbS
j

j′ and ProbT
j

j′ are respectively the normalized histogram of jth

spatial saliency map and jth temporal saliency map: Probj′ = numj′/(h1×250

w1), numj′ is the number of pixel (equal to j′) in saliency map. Here, the

idea is that mui (i = S, T ) are used to decide the confidence of SSM and

TSM. The disorder degree of saliency map reflects the difficulty degree

to detect the salient objects. If mui (i ∈
{
S, T

}
) is larger, the saliency

detection in this domain is worser.255

• STSM is optimized using Eq (8)

STSM = SSM if muS < muT (8)

The frame is often more complex than the color optical flow map, which

results in that the disorder degree of SSM is usually larger than that of

TSM. If muS is smaller than muT , it means it is difficult to detect the

salient object in TSM. Thus, SSM has a high confidence.

• STSM is optimized using Eq (9)

STSM = SSM if σS > σT (9)

σS and σT are respectively the standard deviations of non-zero regions in

two grayscale images HS and HT , which are generated by the following

steps: firstly, converting frame α from RGB to HSI color space, then elim-

inating the hue and saturation information while retaining the luminance

to get the grayscale images α′; secondly, using a threshold δ to neglect the

pixels with low saliency value from the images SSM and TSM as in Eq

(10)

HSij
=

0 if SSMij < δ

α′ij otherwise
HTij

=

0 if TSMij < δ

α′ij otherwise
(10)

where i and j are pixel indexes in the images. The appearance of the260

wrongly detected background is mostly different from the salient object in

the grayscale image, which results in that Hi (i ∈
{

S,T
}

) contains more
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luminance values and thus σi (i ∈
{

S,T
}

) is smaller. If σS is bigger than

σT , it means SSM has a high confidence.

• Low saliency value (lower than δ) in STSM is decreased to 0.1 times.265

The pixels with low saliency value in saliency map are unimportant for

visual saliency but have a large influence in computing the detection con-

fidence. Thus, δ is used to decrease their affection and set to 70 in all this

paper.

4. Experiments and analyses270

In this section, the performance of the proposed method is assessed and

discussed.

4.1. Performance evaluation

Three metrics are used to measure the similarity between the generated

saliency map (SM) and the Ground truth (GT):275

• Precision-recall (P-R) curve [7]: the saliency map is normalized to [0, 255]

and converted to a binary mask (BM) via a threshold that varies from 0

to 255. The precision and the recall are:

Precision =
∣∣∣BM

⋂
GT
∣∣∣/|BM|,Recall =

∣∣∣BM
⋂

GT
∣∣∣/|GT| (11)

For each threshold, a pair of (Precision, Recall) values are computed and

used for plotting P-R curve. The curve closest to the top right corner (1.0,

1.0) corresponds to the best performance.

• F-measure [45]: higher F-measure means better performance.

F−measure = (1 + β2)× (Precision× Recall)(β2 × Precision + Recall)−1

(12)

β2 is often set to 0.3. Average precision (the average of precision values

at all ranks) and average recall (the average of recall values at all ranks)280

are used.
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• Mean Absolute Error (MAE) [7]: smaller MAE means higher similarity

and better performance.

MAE = (h1× w1)−1
h1×w1∑
i=1

|GT(i)− SM(i)| (13)

For each tested dataset, we compute the average metric for each video se-

quence and then compute the average metric for all the videos.

4.2. Test datasets

Three datasets with various contents and various conditions are used for285

models’ performance evaluation and comparison.

4.2.1. Datasets with many salient objects connected to the frame border

Fukuchi dataset [44] includes 10 sequences. The salient object touches the

frame border in most video sequences. All tested methods hardly detect the

salient object for the video “BR128T”. As in [34], the video “BR128T” is ex-290

cluded in the test.

4.2.2. Datasets with complex backgrounds

FBMS dataset [26] is with 59 heterogeneous video sequences. The GT is

available for only a part of frames. We use the test set that contains 30 videos

with provided GT for evaluation. The global motion with high complexity exists295

in most of the video sequences.

4.2.3. Datasets with large daily videos

VOS dataset [26], proposed for video salient object detection, contains 200

indoor/outdoor videos (64 minutes, 116,103 frames). The GT is available for

part of frames. VOS-E and VOS-N are two subsets: VOS-E contains 97 easy300

videos and VOS-N contains 103 videos (the background is cluttered and salient

object is highly dynamic). This large-scale dataset is used to benchmark models

with the evaluation metrics: MAE, Precision, Recall and F-measure. Note that

for the calculation of metrics, an adaptive threshold (computed as the minimum
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value between “maximum pixel value of saliency map” and “twice the average305

values of saliency map”) is used for converting the saliency map to a binary

mask (BM). Except for MAE, the author denotes other three metrics in the

benchmark [26] as the mean Average Precision (MAP), mean Average Recall

(MAR) and FBeta.

4.3. Results and discussions310

Two experimental parts with assorted aims are shown for analysis. Firstly,

the proposed method (based on traditional image-based salient object detection

[9]) in Section 3, denoted as VBGF, is evaluated in Section 4.3.1. The perfor-

mance of each component of the model is shown to demonstrate our contribu-

tions. The VBGF’s performance is then compared with nine state-of-the-art315

traditional salient object detection methods. Secondly, the VBGF is further

improved by integrating a deep learning based image salient object detection

method [36] and denoted as VBGFd. In Section 4.3.2, the contributions are

shown by analyzing the performance of each component. Then performance

benchmarking of our approaches (VBGF and VBGFd) and 13 state-of-the-art320

models is reported. Finally, the run-time complexity is compared in section

4.3.3.

4.3.1. Performance of the VBGF

Nine state-of-the-art saliency models are tested: MST16 [8], FastMBD15 [9],

AMC13 [10], TGFV17 [22], SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28],325

FD17 [34] on Fukuchi and FBMS dataset. For all the methods, the experimental

results are obtained using the source codes or saliency results provided by the

authors.

1) Contributions of each proposed component to the performance

a) Contribution of the proposed virtual border building330

The method (based on the “background prior”) may miss the salient object

connected to the image borders and the proposed virtual border aims to improve

this problem. Since MST16 [8], FastMBD15 [9] and AMC13 [10] detect the
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salient object in image domain based on the “background prior”, we compare

the proposed spatial saliency map with them by using the Fukuchi dataset,335

in which many salient objects connected to the frame border. Quantitative

performance can be found in Fig.7. The proposed spatial saliency detection has

a better performance since it can detect salient objects more completely.

Figure 7: (Better viewed in color) Quantitative comparisons between our proposed spatial

saliency map (proSSM) and three image salient object detection models over the Fukuchi

dataset. Some state-of-the-art methods, including: MST16 [8], FastMBD15 [9] and AMC13

[10]. The left parts show the Precision-Recall curves, the right parts shows the F-measure↑

scores.

b) Contribution of the proposed Feature fusion

The proposed Feature fusion employ the guided filter to fuse the spatial340

edges with the information in temporal domain. We compare the performance

of the proposed temporal saliency map with guided filtering and without guided

filtering. In the Fukuchi dataset the salient object motion is small, and in the

FBMS dataset, the global motion varies largely. These two different datasets are

both used. Quantitative performance can be found in Fig.8 and Fig.9. We can345

see that fusing the spatial salient object edges to the temporal information by

using guided filtering can improve the detection accuracy. It help to optimize the

salient object edges and remove the background part from the saliency region.

c) Contribution of the proposed Map fusion method

Our proposed method first generates spatial saliency map (cf. Section 3.1),350
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P-R curves over Fukuchi P-R curves over FBMS

Figure 8: Precision-Recall (P-R) curves of the proposed temporal saliency map (proTSM)

with guided filtering and without guided filtering over the Fukuchi dataset and the FBMS

dataset.

F-measure scores over Fukuchi F-measure scores over FBMS

Figure 9: F-measure↑ scores of the proposed temporal saliency map: (a) with guided filtering

and (b) without guided filtering over the Fukuchi dataset and the FBMS dataset.

then generates the temporal saliency map (cf. Section 3.2), finally generates the

spatio-temporal saliency map (cf. Section 3.3). Therefore, we separately test the

performance of each proposed saliency map, then compared quantitative results

can be found in Fig.10 and Fig.11. For the Fukuchi dataset, the salient object

motion is slow while the salient object and the background are in high contrast.355

Compared with the spatial saliency map, the detected temporal saliency has

a lower confidence. The proposed fusion can still get a good performance by

retaining the spatial saliency map while neglecting the temporal detection in-

fluence. For the FBMS dataset, the low contrast and the complex background
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P-R curves over Fukuchi P-R curves over FBMS

Figure 10: (Better viewed in color) Precision-Recall (P-R) curves of proSSM, proTSM and

proSTSM over the Fukuchi dataset and FBMS dataset. proSSM: proposed spatial saliency

map; proTSM: proposed temporal saliency map; proSTSM: proposed spatio-temporal saliency

map.

F-measure scores over Fukuchi F-measure scores over FBMS

Figure 11: F-measure↑ scores of proSSM, proTSM and proSTSM over the Fukuchi dataset

and the FBMS dataset. proSSM: proposed spatial saliency map; proTSM: proposed temporal

saliency map; proSTSM: proposed spatio-temporal saliency map.

in the spatial domain make the spatial saliency detection inaccurate. Though360

the global motion is intricacy, the temporal saliency map is still better than the

spatial saliency map. The proposed fusion method takes advantages of results

from both domains and gives a higher overall performance.

2) Comparison of the proposed method with state-of-the-art methods
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a) Quantitative comparison with video salient object detection models365

We compare our proposed method with several video salient object detection

models with the Fukuchi dataset and the FBMS dataset respectively.

For the Fukuchi dataset, six compared models are: TGFV17 [22], SGSP16

[13], RWR15 [11], GF15 [12], SAG15 [28], FD17 [34]. The P-R curves, F-measure

and MAE values are drawn in Fig.12, from which we can see that the proposed370

method has the best P-R curve, the highest F-measure and the smallest MAE

values. The detailed MAE and F-measure scores over four video sequences

are shown in Table.1 and the proposed method achieves the best performance.

These four video sequences are selected with different cases: in “AN119T”, the

salient object locates in the frame center; in “DO01 013”, all the salient object375

touch the frame border and in “DO01 055” and “DO02 001” part of salient

objects touch frame border. In the Fukuchi dataset, the contrast between the

salient object and the background is large and the salient object movement is

slow. Spatial saliency detection thus can already provide a high confidence,

while the wrong detections in the temporal domain may influence the final380

saliency map. Compared with methods TGFV17 [22], SGSP16 [13], RWR15

[11], GF15 [12], SA15 [28], and FD17 [34], the proposed fusion method can

better select higher confidence spatial saliency information from two domains.

For the FBMS dataset, five compared models are TGFV17 [22], SGSP16

[13], RWR15 [11], GF15 [12], SAG15 [28]. Fig.13 reports the P-R curves, F-385

measure and MAE values. We can see that our proposed method performs

the best, while all the methods get lower performances on this dataset since

it is the most challenging one. Five videos with difficult cases (the salient

object is similar to the background or the clustering background is complex) are

selected and the detailed corresponding MAE and F-measure scores are shown390

in Table.2, in which the proposed method is always the best method. In the

FBMS dataset, on one hand, the global motion exists in many sequences and is

with high complexity which make the temporal detection more difficult. On the

other hand, the salient object appearance is similar to that of the background

and the clustering background is complex which makes the spatial detection395
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Figure 12: (Better viewed in color) Quantitative comparisons between our method and six

video salient object detection models over the Fukuchi dataset. The upper parts show the

Precision-Recall curves, the left below shows the F-measure↑ scores and the right below shows

the Mean Absolute Error (MAE)↓ scores. Some state-of-the-art methods, including: TGFV17

[22], SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28], FD17 [34]

.

more difficult. Among methods TGFV17 [22], SGSP16 [13], RWR15 [11], GF15

[12] and SAG15 [28], TGFV17 [22] gets a better result since they put emphasize

on the temporal saliency detection. However, compared with TGFV17 [22],

the proposed method leverage the spatial saliency and fuse them in a more

confidence way to obtain better result.400

b) Subjective comparison with 3 image salient object detection models and

5 video salient object detection models
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Table 1: A table comparing the proposed method and six video salient object detection models

in Mean Absolute Error and F-measure scores over 4 video sequences chosen from the Fukuchi

dataset.

Method
Mean Absolute Error↓ scores

AN119T DO01 013 DO01 055 DO02 001

TGFV17 [22] 0.0119 0.0084 0.0462 0.0324

SGSP16 [13] 0.0772 0.0675 0.0996 0.1463

RWR15 [11] 0.0692 0.0773 0.052 0.0826

GF15 [12] 0.0312 0.0306 0.0334 0.0378

SAG15 [28] 0.0264 0.0247 0. 026 0.0162

FD17 [34] 0.0062 0.0086 0. 0165 0.0113

Ours 0.0027 0.0052 0.0053 0.0014

Method
F-measure↑ scores

AN119T DO01 013 DO01 055 DO02 001

TGFV17 [22] 0.9069 0.704 0.7228 0.808

SGSP16 [13] 0.7318 0.6343 0.5411 0.5925

RWR15 [11] 0.4878 0.5379 0.6533 0.6182

GF15 [12] 0.8659 0.6842 0.7417 0.8292

SAG15 [28] 0.8432 0.5486 0.7393 0.8348

FD17 [34] 0.9449 0.685 0.7852 0.8656

Ours 0.9516 0.801 0.8051 0.9322

1 The Bold number indicates the best result.

To evaluate the overall performances and disparities between our method and

the state-of-the-art methods, we also show a subjective comparison in Fig.14,

(a), (e), (f) and (g) are chosen from the Fukuchi dataset; (b), (c), (d), (h), (i),405

(j) and (k) are from the FBMS dataset. We can see that RWR15 [11] tends

to detect salient object edges rather than the whole salient object. Methods

: MST16 [8], FastMBD15 [9], AMC13 [10], TGFV17 [22], SGSP16 [13], GF15

[12], SAG15 [28] can detect salient object region located in the frame center
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Figure 13: (Better viewed in color) Quantitative comparisons between our method and five

video salient object detection models over the FBMS dataset. The upper parts show the

Precision-Recall curves, the left below shows the F-measure↑ scores and the right below shows

the Mean Absolute Error (MAE)↓ scores. Some state-of-the-art methods, including: TGFV17

[22], SGSP16 [13], RWR15 [11], GF15 [12] and SAG15 [28].

but not the salient part close to frame borders. By visually comparing on this410

figure, we can see that the proposed method can detect the salient object more

completely and more accurately.

4.3.2. Performance of the VBGFd

It may be worthy to look at the performance of the VBGF with an integra-

tion of a deep learning based method, named VBGFd. In VBGF, the “Saliency415

computation” part adopts the traditional method [9], and the “Virtual bor-
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Table 2: A table comparing the proposed method and five video salient object detection

models in Mean Absolute Error and F-measure scores over 5 video sequences chosen from the

FBMS dataset.

Method
Mean Absolute Error↓ scores

Cars5 Cars10 Cats03 Horses04 Horses05

TGFV17 [22] 0.0205 0.0248 0.0536 0.0454 0.0363

SGSP16 [13] 0.0708 0.0599 0.1089 0.0964 0.0877

RWR15 [11] 0.1905 0.1485 0.1471 0.1175 0.0968

GF15 [12] 0.0438 0.0388 0.1148 0.1049 0.0598

SAG15 [28] 0.0486 0.034 0. 0941 0.1427 0.0689

Ours 0.0161 0.0218 0.0103 0.0243 0.0215

Method
F-measure↑ scores

Cars5 Cars10 Cats03 Horses04 Horses05

TGFV17 [22] 0.751 0.6494 0.6573 0.7021 0.6018

SGSP16 [13] 0.6359 0.6595 0.6558 0.6476 0.6105

RWR15 [11] 0.3485 0.4056 0.2219 0.3389 0.3666

GF15 [12] 0.5877 0.6339 0.2762 0.6415 6067

SAG15 [28] 0.4964 0.584 0.3532 0.3797 0.6495

Ours 0.7712 0.7281 0.7184 0.7294 0.6593

1 The Bold number indicates the best result.

der building” part is proposed to solve the problem appeared in this type of

traditional methods (cf. Fig.3). For the VBGFd, we replace the “Saliency com-

putation” and “Virtual border building” parts in both “SD” and “TD” blocks

in Fig.3 by a deep-salient detection method proposed in [36] - DHSNet (because420

of the availability of its source code). Besides, the first two steps in the “Map

fusion” part in Fig.3 change to use the ratio between the entropies for each

frame in Eq.6, instead of using the ratio between mean entropies for the whole

video sequence. In this section, the large-scale video salient object detection

dataset VOS and its two subsets VOS-E, VOS-N are used.425
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Figure 14: Comparison of the saliency maps. (a)-(k) are 11 different video sequences. Some

state-of-the-art methods, including: MST16 [8], FastMBD15 [9], AMC13 [10], TGFV17 [22],

SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28]. GT: Ground truth.

(1) Contributions of the proposed components

In Table 3, we list the performances of the VBGFd with different compo-

nents. We can see that its performance is better for all performance evaluation

metrics with the “guided filtering” by comparing the 4th and 5th columns in

Table 3 (contribution (2)); and its performance is better for most performance430

evaluation metrics when the spatial and the temporal information is fused by

comparing the 3rd, 5th and 6th columns in Table 3 (contribution (3)).

(2) Performance benchmarking of our approach

In Table 4, we inserted the performance of our proposed models into the
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Table 3: Comparison of the proposed VBGFd componets’ performance on dataset VOS, VOS-

E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed temporal saliency map;

proSTSM: proposed spatio-temporal saliency map.

Dataset Metrics

Proposed VBGFd components

proSSM
proTSM without proTSM with

proSTSM
guided filtering guided filtering

VOS-E

MAP↑ 0.863 0.398 0.528 0.881

MAR↑ 0.905 0.380 0.480 0.877

FBeta↑ 0.872 0.394 0.516 0.880

MAE↓ 0.049 0.189 0.154 0.046

VOS-N

MAP↑ 0.649 0.407 0.407 0.690

MAR↑ 0.851 0.389 0.392 0.806

FBeta↑ 0.686 0.403 0.403 0.714

MAE↓ 0.055 0.136 0.132 0.059

VOS

MAP↑ 0.753 0.403 0.466 0.783

MAR↑ 0.877 0.385 0.435 0.840

FBeta↑ 0.778 0.399 0.458 0.795

MAE↓ 0.052 0.162 0.143 0.053

1 The Bold number indicates the best result in each line.

the benchmarking table (cf. Table III in the paper [26]) provided with the435

VOS dataset. Note that here we only list 13 state-of-the-art models (image-

based deep learning and video-based unsupervised models) reported in [26],

not the image-based classic non-deep learning models (because we have already

compared with some classic models in section 4.3.1). We can see that among

the tested 15 models, the VBGFd has the best score for 7 times, when the best440

benchmarked model DHSNet has the best score for 5 times. Thus in general,

we can say that the VBGFd performs the best among the tested models.

4.3.3. Time

A PC with Intel Core i7 4910 2.9GHz CPU and 16GB RAM is used for testing

the speed of traditional methods, and the deep learning method is performed445
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Table 4: Performance benchmarking of our approach and 13 state-of-the-art models on the

dataset VOS and two subsets VOS-E and VOS-N. These models are categorized into two

parts: [I+D] for deep learning and image-based, [V+U] for video-based and unsupervised,

[V+D] for deep learning and video-based.

Models
VOS-E VOS-N VOS

[MAP↑ MAR↑ FBeta↑ MAE↓] [MAP↑ MAR↑ FBeta↑ MAE↓] [MAP↑ MAR↑ FBeta↑ MAE↓]

[I
+

D
]

LEGS 0.820 0.685 0.784 0.193 0 556 0.593 0.564 0.215 0.684 0.638 0.673 0.204

MCDL 0.831 0.787 0.821 0.081 0.570 0.645 0.586 0.085 0.697 0.714 0.701 0.083

MDF 0.740 0.848 0.762 0.100 0.527 0.742 0.565 0.098 0.630 0.793 0.661 0.099

ELD 0.790 0.884 0.810 0.060 0.569 0.838 0.615 0.081 0.676 0.861 0.712 0.071

DCL 0.864 0.735 0.830 0.084 0.583 0.809 0.624 0.079 0.719 0.773 0.731 0.081

RFCN 0.834 0.820 0.831 0.075 0.614 0.783 0.646 0.080 0.721 0.801 0.738 0.078

DHSNet 0.863 0.905 0.872 0.049 0.649 0.851 0.686 0.055 0.753 0.877 0.778 0.052

[V
+

U
]

SIV 0.693 0.543 0.651 0.204 0.451 0.523 0.466 0.201 0.568 0.533 0.560 0.203

FST 0.781 0.903 0.806 0.076 0.619 0.691 0.634 0.117 0.697 0.794 0.718 0.097

NLC 0.439 0.421 0.435 0.204 0.561 0.610 0.572 0.123 0.502 0.518 0.505 0.162

SAG 0.709 0.814 0.731 0.129 0.354 0.742 0.402 0.150 0.526 0.777 0.568 0.140

GF 0.712 0.798 0.730 0.153 0.346 0.738 0.394 0.331 0.523 0.767 0 565 0.244

SSA [26] 0.875 0.776 0.850 0.062 0.660 0.682 0.665 0.103 0.764 0.728 0.755 0.083

VBGF 0.797 0.773 0.791 0.085 0.558 0.688 0.583 0.130 0.674 0.729 0.686 0.108

[V
+

D
]

SFCN [41] 0.806 0.842 0.814 0.063 0.577 0.815 0.619 0.086 0.688 0.829 0.716 0.075

VBGFd 0.881 0.877 0.880 0.046 0.690 0.806 0.714 0.059 0.783 0.840 0.795 0.053

1 The best three scores in each column are marked in red, green and blue, respectively.

2 13 state-of-the-art models (LEGS,MCDL,MDF,ELD,DCL,RFCN,DHSNet,SIV,FST,NLC,SAG,GF) can be referenced

from the paper [26]. For SFCN, the result is generated using the provided source code.

on a NVIDIA 1080 GPU. Note that the video (Fukuchi and FBMS datasets)

with original resolution is used. For different models that tested in section 4.3.1

(except the model FD17 [34] with the unpublished code), the average run-time

is listed in Table 5. Video-based method SFCN and 3 image-based models

have low computation costs. Others have higher computation costs since the450

optical flow estimation is usually time consuming. The proposed VBGF and

VBGFd models are among the three fastest video-based detection models, and

the average run-time per frame of each element can be found in Table 6 in detail.

5. Conclusion455

In this paper, a novel video salient object detection method (the VBGF) and

its extension integrating deep representations (the VBGFd) are proposed. Using

virtual border concept has helped to address the problem of distance transform
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Table 5: Average run time (per frame) of the compared models (MST16 [8], FastMBD15 [9],

AMC13 [10], TGFV17 [22], SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28]), SFCN [41]).

Image based MST FastMBD AMC - - - -

Time(s)↓ 0.200 0.018 0.153 - - - -

Video based SGSP RWR GF SAG TGFV SFCN VBGF VBGFd

Time(s)↓ 15.37 14.25 13.50 15.38 33.17 0.072 3.56 3.14

Table 6: Average run time (per frame) of each component in the proposed models.

Component
VBGF VBGFd

Time(s) Ratio(%) Time(s) Ratio(%)

virtual border building 0.50 14.04 - -

saliency detection 0.07 1.97 0.15 4.78

optical flow computation 2.80 78.65 2.80 89.17

feature fusion(guided filtering) 0.07 1.97 0.07 2.23

map fusion 0.12 3.37 0.12 3.82

employed for saliency computation in previous approaches. The guided filter-

based Feature fusion and the Map fusion are efficiently used for fusing spatial460

and temporal information together by applying appropriate balance. When

tested on various video databases, the proposed approach yields satisfactory

performance and even outperforms the state-of-the-art methods.

The virtual border can be used as an optimization operation for salient object

detection methods that are based on background prior. The guided filter-based465

Feature fusion helps to remove background regions for moving object detection

and segmentation. The Map fusion provides a new way to combine various

individual saliency maps into a more robust one. However, the proposed fusion

can lead to information loss as the used hand-crafted features are not robust in

some complex cases, which may be improved with more informative features; so470

there is still a room for improvement. Hence for the future work, we intend to
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explore deep-learning based methods for salient object detection in videos. We

also plan to improve the above fusion by training deep networks to learn more

useful deep representations.
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